Skip to main content

Advertisement

Log in

The role of CCR5 in directing the mobilization and biological function of CD11b+Gr1+Ly6Clow polymorphonuclear myeloid cells in cancer

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Bone marrow (BM) cells of the hematopoietic system, also known as BM-derived leukocytes (BMD), are mobilized from the BM to the blood and then colonize tumor sites. These cells then become key players in either promoting or regulating the development and progression of tumors. Among the cells that suppress anti-tumor immunity are regulatory T cells (Tregs), tumor-associated macrophages (TAMS) and myeloid-derived suppressor cells (MDSC). MDSC comprise CD11b+Gr1+Ly6Clow polymorphonuclear myeloid cells (PMN-MDSC), and CD11b+Gr1+Ly6Chigh monocytic myeloid cells (Mo-MDSC). Several studies including ours have identified the CCR2–CCL2 axis as the key driver of the mobilization of monocytic cells from the BM to the blood and later their colonization at the tumor site. The current review focuses on the mechanisms by which PMN-MDSC are mobilized from the BM to the blood and later to the tumor site, and their clinical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

Arg1:

Arginase 1

BM:

Bone marrow

BMD:

Bone marrow derived

CTLA-4:

Cytotoxic T-lymphocyte-associated antigen 4

DKFZ:

Deutsche Krebsforschungszentrum (German Cancer Research Center)

ECM:

Extracellular matrix

MDSCs:

Myeloid-derived suppressor cells

Mo-MDSCs:

Monocytic myeloid-derived suppressor cells

MOST:

Ministry of Science, Technology and Space of Israel

MSCs:

Mesenchymal stem cells

NK:

Natural killer cells

PMN-MDSCs:

Polymorphonuclear myeloid-derived suppressor cells

Tr1:

T-regulatory 1 cells

TAMs:

Tumor-associated macrophages

TME:

Tumor microenvironment

References

  1. Klein-Goldberg A, Maman S, Witz IP (2014) The role played by the microenvironment in site-specific metastasis. Cancer Lett 352(1):54–58

    Article  CAS  Google Scholar 

  2. Witz IP (2009) The tumor microenvironment: the making of a paradigm. Cancer Microenviron 2(Suppl 1):9–17

    Article  Google Scholar 

  3. Alderton GK, Bordon Y (2012) Tumour immunotherapy–leukocytes take up the fight. Nat Rev Immunol 12(4):237

    Article  CAS  Google Scholar 

  4. Bordon Y (2014) Tumour immunology: Anticancer drugs need bugs. Nat Rev Immunol 14(1):1

    Article  CAS  Google Scholar 

  5. Danovi S (2016) Tumour microenvironment: As time goes by. Nat Rev Cancer 16(6):342–343

    Article  CAS  Google Scholar 

  6. Dart A (2018) Tumour microenvironment: Radical changes. Nat Rev Cancer 18(2):65

    Article  CAS  Google Scholar 

  7. Engblom C, Pfirschke C, Pittet MJ (2016) The role of myeloid cells in cancer therapies. Nat Rev Cancer 16(7):447–462

    Article  CAS  Google Scholar 

  8. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268

    Article  CAS  Google Scholar 

  9. Kitamura T, Qian BZ, Pollard JW (2015) Immune cell promotion of metastasis. Nat Rev Immunol 15(2):73–86

    Article  CAS  Google Scholar 

  10. Nagarsheth N, Wicha MS, Zou W (2017) Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol 17(9):559–572

    Article  CAS  Google Scholar 

  11. Speiser DE, Ho PC, Verdeil G (2016) Regulatory circuits of T cell function in cancer. Nat Rev Immunol 16(10):599–611

    Article  CAS  Google Scholar 

  12. Turley SJ, Cremasco V, Astarita JL (2015) Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol 15(11):669–682

    Article  CAS  Google Scholar 

  13. Yu H, Kortylewski M, Pardoll D (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7(1):41–51

    Article  CAS  Google Scholar 

  14. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6(4):295–307

    Article  CAS  Google Scholar 

  15. Serbina NV, Pamer EG (2006) Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 7(3):311–317

    Article  CAS  Google Scholar 

  16. Umansky V, Sevko A (2012) Overcoming immunosuppression in the melanoma microenvironment induced by chronic inflammation. Cancer Immunol Immunother 61(2):275–282

    Article  CAS  Google Scholar 

  17. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174

    Article  CAS  Google Scholar 

  18. Kumar V, Patel S, Tcyganov E, Gabrilovich DI (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37(3):208–220

    Article  CAS  Google Scholar 

  19. Pattabiraman DR, Weinberg RA (2014) Tackling the cancer stem cells—what challenges do they pose? Nat Rev Drug Discov 13(7):497–512

    Article  CAS  Google Scholar 

  20. Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, Mandruzzato S, Murray PJ, Ochoa A, Ostrand-Rosenberg S, Rodriguez PC, Sica A, Umansky V, Vonderheide RH, Gabrilovich DI (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150

    Article  CAS  Google Scholar 

  21. Sharma P, Allison JP (2015) Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161(2):205–214

    Article  CAS  Google Scholar 

  22. Tanaka A, Sakaguchi S (2017) Regulatory T cells in cancer immunotherapy. Cell Res 27(1):109–118

    Article  CAS  Google Scholar 

  23. Gagliani N, Magnani CF, Huber S, Gianolini ME, Pala M, Licona-Limon P, Guo B, Herbert DR, Bulfone A, Trentini F, Di Serio C, Bacchetta R, Andreani M, Brockmann L, Gregori S, Flavell RA, Roncarolo MG (2013) Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat Med 19(6):739–746

    Article  CAS  Google Scholar 

  24. Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11(10):889–896

    Article  CAS  Google Scholar 

  25. Butler JM, Kobayashi H, Rafii S (2010) Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer 10(2):138–146

    Article  CAS  Google Scholar 

  26. Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4(12):941–952

    Article  CAS  Google Scholar 

  27. Hawila E, Razon H, Wildbaum G, Blattner C, Sapir Y, Shaked Y, Umansky V, Karin N (2017) CCR5 directs the mobilization of CD11b(+)Gr1(+)Ly6C(low) polymorphonuclear myeloid cells from the bone marrow to the blood to support tumor development. Cell Rep 21(8):2212–2222

    Article  CAS  Google Scholar 

  28. Blattner C, Fleming V, Weber R, Himmelhan B, Altevogt P, Gebhardt C, Schulze TJ, Razon H, Hawila E, Wildbaum G, Utikal J, Karin N, Umansky V (2018) CCR5(+) myeloid-derived suppressor cells are enriched and activated in melanoma lesions. Cancer Res 78(1):157–167

    Article  CAS  Google Scholar 

  29. Bonavita O, Massara M, Bonecchi R (2016) Chemokine regulation of neutrophil function in tumors. Cytokine Growth Factor Rev 30:81–86

    Article  CAS  Google Scholar 

  30. Sokol CL, Luster AD (2015) The chemokine system in innate immunity. Cold Spring Harb Perspect Biol 7(5):a016303. https://doi.org/10.1101/cshperspect.a016303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zlotnik A (2006) Involvement of chemokine receptors in organ-specific metastasis. Contrib Microbiol 13:191–199

    Article  CAS  Google Scholar 

  32. Zlotnik A, Burkhardt AM, Homey B (2011) Homeostatic chemokine receptors and organ-specific metastasis. Nat Rev Immunol 11(9):597–606

    Article  CAS  Google Scholar 

  33. Sallusto F, Baggiolini M (2008) Chemokines and leukocyte traffic. Nat Immunol 9(9):949–952

    Article  CAS  Google Scholar 

  34. Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19(1):71–82

    Article  CAS  Google Scholar 

  35. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475(7355):222–225

    Article  CAS  Google Scholar 

  36. Izhak L, Wildbaum G, Zohar Y, Anunu R, Klapper L, Elkeles A, Seagal J, Yefenof E, Ayalon-Soffer M, Karin N (2009) A novel recombinant fusion protein encoding a 20-amino acid residue of the third extracellular (E3) domain of CCR2 neutralizes the biological activity of CCL2. J Immunol 183(1):732–739

    Article  CAS  Google Scholar 

  37. Shojaei F, Wu X, Zhong C, Yu L, Liang XH, Yao J, Blanchard D, Bais C, Peale FV, van Bruggen N, Ho C, Ross J, Tan M, Carano RA, Meng YG, Ferrara N (2007) Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450(7171):825–831

    Article  CAS  Google Scholar 

  38. Zhao W, Xu Y, Xu J, Wu D, Zhao B, Yin Z, Wang X (2015) Subsets of myeloid-derived suppressor cells in hepatocellular carcinoma express chemokines and chemokine receptors differentially. Int Immunopharmacol 26(2):314–321

    Article  CAS  Google Scholar 

  39. Chang AL, Miska J, Wainwright DA, Dey M, Rivetta CV, Yu D, Kanojia D, Pituch KC, Qiao J, Pytel P, Han Y, Wu M, Zhang L, Horbinski CM, Ahmed AU, Lesniak MS (2016) CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res 76(19):5671–5682

    Article  CAS  Google Scholar 

  40. Chun E, Lavoie S, Michaud M, Gallini CA, Kim J, Soucy G, Odze R, Glickman JN, Garrett WS (2015) CCL2 promotes colorectal carcinogenesis by enhancing polymorphonuclear myeloid-derived suppressor cell population and function. Cell Rep 12(2):244–257

    Article  CAS  Google Scholar 

  41. Ding Y, Shen J, Zhang G, Chen X, Wu J, Chen W (2015) CD40 controls CXCR5-induced recruitment of myeloid-derived suppressor cells to gastric cancer. Oncotarget 6(36):38901–38911

    Article  Google Scholar 

  42. Highfill SL, Cui Y, Giles AJ, Smith JP, Zhang H, Morse E, Kaplan RN, Mackall CL (2014) Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci Transl Med 6(237):237ra267

    Article  Google Scholar 

  43. Katoh H, Wang D, Daikoku T, Sun H, Dey SK, Dubois RN (2013) CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis. Cancer Cell 24(5):631–644

    Article  CAS  Google Scholar 

  44. Lesokhin AM, Hohl TM, Kitano S, Cortez C, Hirschhorn-Cymerman D, Avogadri F, Rizzuto GA, Lazarus JJ, Pamer EG, Houghton AN, Merghoub T, Wolchok JD (2012) Monocytic CCR2(+) myeloid-derived suppressor cells promote immune escape by limiting activated CD8 T-cell infiltration into the tumor microenvironment. Cancer Res 72(4):876–886

    Article  CAS  Google Scholar 

  45. Ortiz ML, Lu L, Ramachandran I, Gabrilovich DI (2014) Myeloid-derived suppressor cells in the development of lung cancer. Cancer Immunol Res 2(1):50–58

    Article  CAS  Google Scholar 

  46. Saiwai H, Kumamaru H, Ohkawa Y, Kubota K, Kobayakawa K, Yamada H, Yokomizo T, Iwamoto Y, Okada S (2013) Ly6C+Ly6G-myeloid-derived suppressor cells play a critical role in the resolution of acute inflammation and the subsequent tissue repair process after spinal cord injury. J Neurochem 125(1):74–88

    Article  CAS  Google Scholar 

  47. Wang D, Sun H, Wei J, Cen B, DuBois RN (2017) CXCL1 is critical for premetastatic niche formation and metastasis in colorectal cancer. Cancer Res 77(13):3655–3665

    Article  CAS  Google Scholar 

  48. Zhang H, Ye YL, Li MX, Ye SB, Huang WR, Cai TT, He J, Peng JY, Duan TH, Cui J, Zhang XS, Zhou FJ, Wang RF, Li J (2017) CXCL2/MIF-CXCR2 signaling promotes the recruitment of myeloid-derived suppressor cells and is correlated with prognosis in bladder cancer. Oncogene 36(15):2095–2104

    Article  CAS  Google Scholar 

Download references

Funding

The studies of Nathan Karin and his group described in the current review were funded by the co-operational research program of the Deutsche Krebsforschungszentrum (German Cancer Research Center) (DKFZ), Heidelberg, Germany, with the Ministry of Science, Technology & Space (MOST) of Israel (DKFZ—MOST), Grant #CA157, the Israel Cancer Research fund (ICRF) Grant #171961-PG, and Israel Science Foundation (ISF) Grant # 630/15.

Author information

Authors and Affiliations

Authors

Contributions

NK wrote the review and HR participated in discussions and in editing the review.

Corresponding author

Correspondence to Nathan Karin.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Ethical approval and ethical standards

All animal experiments were conducted according to the Technion ethic committee guidelines, Technion animal experimentation protocol no. IL-128-12-2012 and protocol no. IL-062-06-2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karin, N., Razon, H. The role of CCR5 in directing the mobilization and biological function of CD11b+Gr1+Ly6Clow polymorphonuclear myeloid cells in cancer. Cancer Immunol Immunother 67, 1949–1953 (2018). https://doi.org/10.1007/s00262-018-2245-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-018-2245-6

Keywords

Navigation