Skip to main content
Log in

Archaeal DNA polymerases in biotechnology

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

DNA polymerase (pol) is a ubiquitous enzyme that synthesizes DNA strands in all living cells. In vitro, DNA pol is used for DNA manipulation, including cloning, PCR, site-directed mutagenesis, sequencing, and several other applications. Family B archaeal DNA pols have been widely used for molecular biological methods. Biochemical and structural studies reveal that each archaeal DNA pol has different characteristics with respect to fidelity, processivity and thermostability. Due to their high fidelity and strong thermostability, family B archaeal DNA pols have the extensive application on high-fidelity PCR, DNA sequencing, and site-directed mutagenesis while family Y archaeal DNA pols have the potential for error-prone PCR and random mutagenesis because of their low fidelity and strong thermostability. This information combined with mutational analysis has been used to construct novel DNA pols with altered properties that enhance their use as biotechnological reagents. In this review, we focus on the development and use of family B archaeal DNA pols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Soud WA, Radstrom P (2001) Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol 39:485–493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arezi B, Hansen CJ, Hogrefe HH (2002) Efficient and high fidelity incorporation of dye-terminators by a novel archaeal DNA polymerase mutant. J Mol Biol 322:719–729

    CAS  PubMed  Google Scholar 

  • Bae H, Kim KP, Lee JI, Song JG, Kil EJ, Kim JS, Kwon ST (2009) Characterization of DNA polymerase from the hyperthermophilic archaeon Thermococcus marinus and its application to PCR. Extremophiles 13:657–667

    CAS  PubMed  Google Scholar 

  • Bath C, Cukalac T, Porter K, Dyall-Smith ML (2006) His1 and His2 are distantly related, spindle-shaped haloviruses belonging to the novel virus group, Salterprovirus. Virology 350:228–239

    CAS  PubMed  Google Scholar 

  • Bergen K, Betz K, Welte W, Diederichs K, Marx A (2013) Structures of KOD and 9 degrees N DNA polymerases complexed with primer template duplex. Chembiochem 14:1058–1062

    CAS  PubMed  Google Scholar 

  • Bi L, Kim DH, Ju J (2006) Design and synthesis of a chemically cleavable fluorescent nucleotide, 3′-O-allyl-dGTP-allyl-bodipy-FL-510, as a reversible terminator for DNA sequencing by synthesis. J Am Chem Soc 128:2542–2543

    CAS  PubMed  Google Scholar 

  • Biles BD, Connolly BA (2004) Low-fidelity Pyrococcus furiosus DNA polymerase mutants useful in error-prone PCR. Nucleic Acids Res 32:e176

    PubMed Central  PubMed  Google Scholar 

  • Blanco L, Bernad A, Lazaro JM, Martin G, Garmendia C, Salas M (1989) Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J Biol Chem 264:8935–8940

    CAS  PubMed  Google Scholar 

  • Bohlke K, Pisani FM, Vorgias CE, Frey B, Sobek H, Rossi M, Antranikian G (2000) PCR performance of the B-type DNA polymerase from the thermophilic euryarchaeon Thermococcus aggregans improved by mutations in the Y-GG/A motif. Nucleic Acids Res 28:3910–3917

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonch-Osmolovskaya E, Svetliechny V, Ankenbauer W, Schmitz Agheuian G, Angee B, Ebenbichler C, Laue F (1996) Thermostable nucleic acid polymerase from Thermococcus gorgonarius. Patent appl no EP 0834570 A1

  • Boudsocq F, Iwai S, Hanaoka F, Woodgate R (2001) Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4): an archaeal DinB-like DNA polymerase with lesion-bypass properties akin to eukaryotic poleta. Nucleic Acids Res 29:4607–4616

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boudsocq F, Kokoska RJ, Plosky BS, Vaisman A, Ling H, Kunkel TA, Yang W, Woodgate R (2004) Investigating the role of the little finger domain of Y-family DNA polymerases in low fidelity synthesis and translesion replication. J Biol Chem 279:32932–32940

    CAS  PubMed  Google Scholar 

  • Burgers PM, Koonin EV, Bruford E, Blanco L, Burtis KC, Christman MF, Copeland WC, Friedberg EC, Hanaoka F, Hinkle DC, Lawrence CW, Nakanishi M, Ohmori H, Prakash L, Prakash S, Reynaud CA, Sugino A, Todo T, Wang Z, Weill JC, Woodgate R (2001) Eukaryotic DNA polymerases: proposal for a revised nomenclature. J Biol Chem 276:43487–43490

    CAS  PubMed  Google Scholar 

  • Cambon-Bonavita MA, Schmitt P, Zieger M, Flaman JM, Lesongeur F, Raguenes G, Bindel D, Frisch N, Lakkis Z, Dupret D, Barbier G, Querellou J (2000) Cloning, expression, and characterization of DNA polymerase I from the hyperthermophilic archaea Thermococcus fumicolans. Extremophiles 4:215–225

    CAS  PubMed  Google Scholar 

  • Cann IK, Komori K, Toh H, Kanai S, Ishino Y (1998) A heterodimeric DNA polymerase: evidence that members of Euryarchaeota possess a distinct DNA polymerase. Proc Natl Acad Sci U S A 95:14250–14255

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carey MF, Peterson CL, Smale ST (2013) PCR-mediated site-directed mutagenesis. Cold Spring Harb Protoc 2013:738–742

    PubMed  Google Scholar 

  • Chen CY (2014) DNA polymerases drive DNA sequencing-by-synthesis technologies: both past and present. Front Microbiol 5:305

    PubMed Central  PubMed  Google Scholar 

  • Chen X, Liu W, Quinto I, Scala G (1997) High efficiency of site-directed mutagenesis mediated by a single PCR product. Nucleic Acids Res 25:682–684

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chien A, Edgar DB, Trela JM (1976) Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol 127:1550–1557

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cho SS, Kim KP, Lee KK, Youn MH, Kwon ST (2012) Characterization and PCR application of a new high-fidelity DNA polymerase from Thermococcus waiotapuensis. Enzym Microb Technol 51:334–341

    CAS  Google Scholar 

  • Cho SS, Yu M, Kim SH, Kwon ST (2014) Enhanced PCR efficiency of high-fidelity DNA polymerase from Thermococcus waiotapuensis. Enzym Microb Technol 63:39–45

    CAS  Google Scholar 

  • Cline J, Braman JC, Hogrefe HH (1996) PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res 24:3546–3551

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cubonova L, Richardson T, Burkhart BW, Kelman Z, Connolly BA, Reeve JN, Santangelo TJ (2013) Archaeal DNA polymerase D but not DNA polymerase B is required for genome replication in Thermococcus kodakarensis. J Bacteriol 195:2322–2328

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dabrowski S, Kur J (1998) Cloning and expression in Escherichia coli of the recombinant his-tagged DNA polymerases from Pyrococcus furiosus and Pyrococcus woesei. Protein Expr Purif 14:131–138

    CAS  PubMed  Google Scholar 

  • Dietrich J, Schmitt P, Zieger M, Preve B, Rolland JL, Chaabihi H, Gueguen Y (2002) PCR performance of the highly thermostable proof-reading B-type DNA polymerase from Pyrococcus abyssi. FEMS Microbiol Lett 217:89–94

    CAS  PubMed  Google Scholar 

  • Dufour E, Mendez J, Lazaro JM, de Vega M, Blanco L, Salas M (2000) An aspartic acid residue in TPR-1, a specific region of protein-priming DNA polymerases, is required for the functional interaction with primer terminal protein. J Mol Biol 304:289–300

    CAS  PubMed  Google Scholar 

  • Elshawadfy AM, Keith BJ, Ee Ooi H, Kinsman T, Heslop P, Connolly BA (2014) DNA polymerase hybrids derived from the family-B enzymes of Pyrococcus furiosus and Thermococcus kodakarensis: improving performance in the polymerase chain reaction. Front Microbiol 5:224

    PubMed Central  PubMed  Google Scholar 

  • Emmanuel PJ (1993) Polymerase chain reaction from bench to bedside. Applications for infectious disease. J Fla Med Assoc 80:627–630

    CAS  PubMed  Google Scholar 

  • Eoff RL, Angel KC, Egli M, Guengerich FP (2007) Molecular basis of selectivity of nucleoside triphosphate incorporation opposite O6-benzylguanine by Sulfolobus solfataricus DNA polymerase Dpo4: steady-state and pre-steady-state kinetics and x-ray crystallography of correct and incorrect pairing. J Biol Chem 282:13573–13584

    CAS  PubMed  Google Scholar 

  • Erlich HA, Gelfand D, Sninsky JJ (1991) Recent advances in the polymerase chain reaction. Science 252:1643–1651

    CAS  PubMed  Google Scholar 

  • Esteban JA, Salas M, Blanco L (1993) Fidelity of phi 29 DNA polymerase. Comparison between protein-primed initiation and DNA polymerization. J Biol Chem 268:2719–2726

    CAS  PubMed  Google Scholar 

  • Evans SJ, Fogg MJ, Mamone A, Davis M, Pearl LH, Connolly BA (2000) Improving dideoxynucleotide-triphosphate utilisation by the hyper-thermophilic DNA polymerase from the archaeon Pyrococcus furiosus. Nucleic Acids Res 28:1059–1066

    CAS  PubMed Central  PubMed  Google Scholar 

  • Firbank SJ, Wardle J, Heslop P, Lewis RJ, Connolly BA (2008) Uracil recognition in archaeal DNA polymerases captured by X-ray crystallography. J Mol Biol 381:529–539

    CAS  PubMed  Google Scholar 

  • Fogg MJ, Pearl LH, Connolly BA (2002) Structural basis for uracil recognition by archaeal family B DNA polymerases. Nat Struct Biol 9:922–927

    CAS  PubMed  Google Scholar 

  • Foldes-Papp Z, Angerer B, Ankenbauer W, Rigler R (2001a) Fluorescent high-density labeling of DNA: error-free substitution for a normal nucleotide. J Biotechnol 86:237–253

    CAS  PubMed  Google Scholar 

  • Foldes-Papp Z, Angerer B, Thyberg P, Hinz M, Wennmalm S, Ankenbauer W, Seliger H, Holmgren A, Rigler R (2001b) Fluorescently labeled model DNA sequences for exonucleolytic sequencing. J Biotechnol 86:203–224

    CAS  PubMed  Google Scholar 

  • Gardner AF, Jack WE (1999) Determinants of nucleotide sugar recognition in an archaeon DNA polymerase. Nucleic Acids Res 27:2545–2553

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gardner AF, Jack WE (2002) Acyclic and dideoxy terminator preferences denote divergent sugar recognition by archaeon and Taq DNA polymerases. Nucleic Acids Res 30:605–613

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gardner AF, Kelman Z (2014) DNA polymerases in biotechnology. Front Microbiol 5:659

    PubMed Central  PubMed  Google Scholar 

  • Gardner AF, Joyce CM, Jack WE (2004) Comparative kinetics of nucleotide analog incorporation by Vent DNA polymerase. J Biol Chem 279:11834–11842

    CAS  PubMed  Google Scholar 

  • Garforth SJ, Domaoal RA, Lwatula C, Landau MJ, Meyer AJ, Anderson KS, Prasad VR (2010) K65R and K65A substitutions in HIV-1 reverse transcriptase enhance polymerase fidelity by decreasing both dNTP misinsertion and mispaired primer extension efficiencies. J Mol Biol 401:33–44

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gouge J, Ralec C, Henneke G, Delarue M (2012) Molecular recognition of canonical and deaminated bases by P. abyssi family B DNA polymerase. J Mol Biol 423:315–336

    CAS  PubMed  Google Scholar 

  • Griffiths K, Nayak S, Park K, Mandelman D, Modrell B, Lee J, Ng B, Gibbs MD, Bergquist PL (2007) New high fidelity polymerases from Thermococcus species. Protein Expr Purif 52:19–30

    CAS  PubMed  Google Scholar 

  • Guo L, Feng Y, Zhang Z, Yao H, Luo Y, Wang J, Huang L (2008) Biochemical and structural characterization of Cren7, a novel chromatin protein conserved among Crenarchaea. Nucleic Acids Res 36:1129–1137

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haff LA, Smirnov IP (1997) Single-nucleotide polymorphism identification assays using a thermostable DNA polymerase and delayed extraction MALDI-TOF mass spectrometry. Genome Res 7:378–388

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hashimoto H, Nishioka M, Fujiwara S, Takagi M, Imanaka T, Inoue T, Kai Y (2001) Crystal structure of DNA polymerase from hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1. J Mol Biol 306:469–477

    CAS  PubMed  Google Scholar 

  • Henneke G, Flament D, Hubscher U, Querellou J, Raffin JP (2005) The hyperthermophilic euryarchaeota Pyrococcus abyssi likely requires the two DNA polymerases D and B for DNA replication. J Mol Biol 350:53–64

    CAS  PubMed  Google Scholar 

  • Hopfner KP, Eichinger A, Engh RA, Laue F, Ankenbauer W, Huber R, Angerer B (1999) Crystal structure of a thermostable type B DNA polymerase from Thermococcus gorgonarius. Proc Natl Acad Sci U S A 96:3600–3605

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hutchison CA 3rd, Phillips S, Edgell MH, Gillam S, Jahnke P, Smith M (1978) Mutagenesis at a specific position in a DNA sequence. J Biol Chem 253:6551–6560

    CAS  PubMed  Google Scholar 

  • Ichida JK, Horhota A, Zou K, McLaughlin LW, Szostak JW (2005) High fidelity TNA synthesis by Therminator polymerase. Nucleic Acids Res 33:5219–5225

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishino S, Ishino Y (2014) DNA polymerases as useful reagents for biotechnology - the history of developmental research in the field. Front Microbiol 5:465

    PubMed Central  PubMed  Google Scholar 

  • Ishino Y, Kawamura A, Ishino Y (2012) Application of PCNA to processive PCR by reducing the stability of its ring structure. J Jpn Soc Extremophiles 11:19–25

    Google Scholar 

  • Ju J, Kim DH, Bi L, Meng Q, Bai X, Li Z, Li X, Marma MS, Shi S, Wu J, Edwards JR, Romu A, Turro NJ (2006) Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators. Proc Natl Acad Sci U S A 103:19635–19640

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kawamura AIY, Ishino S (2012) Biophysical analysis of PCNA from Pyrococcus furiosus. J Jpn Soc Extremophiles 11:12–18

    Google Scholar 

  • Ke SH, Madison EL (1997) Rapid and efficient site-directed mutagenesis by single-tube ‘megaprimer’ PCR method. Nucleic Acids Res 25:3371–3372

    CAS  PubMed Central  PubMed  Google Scholar 

  • Killelea T, Ghosh S, Tan SS, Heslop P, Firbank SJ, Kool ET, Connolly BA (2010) Probing the interaction of archaeal DNA polymerases with deaminated bases using X-ray crystallography and non-hydrogen bonding isosteric base analogues. Biochemistry 49:5772–5781

    CAS  PubMed Central  PubMed  Google Scholar 

  • Killelea T, Ralec C, Bosse A, Henneke G (2014) PCR performance of a thermostable heterodimeric archaeal DNA polymerase. Front Microbiol 5:195

    PubMed Central  PubMed  Google Scholar 

  • Kim S, Labbe RG, Ryu S (2000) Inhibitory effects of collagen on the PCR for detection of Clostridium perfringens. Appl Environ Microbiol 66:1213–1215

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim YJ, Lee HS, Bae SS, Jeon JH, Lim JK, Cho Y, Nam KH, Kang SG, Kim SJ, Kwon ST, Lee JH (2007) Cloning, purification, and characterization of a new DNA polymerase from a hyperthermophilic archaeon, Thermococcus sp. NA1. J Microbiol Biotechnol 17:1090–1097

    CAS  PubMed  Google Scholar 

  • Kim SW, Kim DU, Kim JK, Kang LW, Cho HS (2008) Crystal structure of Pfu, the high fidelity DNA polymerase from Pyrococcus furiosus. Int J Biol Macromol 42:356–361

    PubMed  Google Scholar 

  • Kim KP, Bae H, Kim IH, Kwon ST (2011a) Cloning, expression, and PCR application of DNA polymerase from the hyperthermophilic archaeon, Thermococcus celer. Biotechnol Lett 33:339–346

    CAS  PubMed  Google Scholar 

  • Kim KP, Cho SS, Lee KK, Youn MH, Kwon ST (2011b) Improved thermostability and PCR efficiency of Thermococcus celericrescens DNA polymerase via site-directed mutagenesis. J Biotechnol 155:156–163

    CAS  PubMed  Google Scholar 

  • Kunkel TA (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A 82:488–492

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuroita T, Matsumura H, Yokota N, Kitabayashi M, Hashimoto H, Inoue T, Imanaka T, Kai Y (2005) Structural mechanism for coordination of proofreading and polymerase activities in archaeal DNA polymerases. J Mol Biol 351:291–298

    CAS  PubMed  Google Scholar 

  • Laos R, Thomson JM, Benner SA (2014) DNA polymerases engineered by directed evolution to incorporate non-standard nucleotides. Front Microbiol 5:565

    PubMed Central  PubMed  Google Scholar 

  • Lasken RS, Schuster DM, Rashtchian A (1996) Archaebacterial DNA polymerases tightly bind uracil-containing DNA. J Biol Chem 271:17692–17696

    CAS  PubMed  Google Scholar 

  • Leconte AM, Patel MP, Sass LE, McInerney P, Jarosz M, Kung L, Bowers JL, Buzby PR, Efcavitch JW, Romesberg FE (2010) Directed evolution of DNA polymerases for next-generation sequencing. Angew Chem Int Ed Engl 49:5921–5924

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee JI, Kim YJ, Bae H, Cho SS, Lee JH, Kwon ST (2010) Biochemical properties and PCR performance of a family B DNA polymerase from hyperthermophilic Euryarchaeon Thermococcus peptonophilus. Appl Biochem Biotechnol 160:1585–1599

    CAS  PubMed  Google Scholar 

  • Li V, Hogg M, Reha-Krantz LJ (2010) Identification of a new motif in family B DNA polymerases by mutational analyses of the bacteriophage t4 DNA polymerase. J Mol Biol 400:295–308

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ling H, Boudsocq F, Woodgate R, Yang W (2001) Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell 107:91–102

    CAS  PubMed  Google Scholar 

  • Makarova KS, Krupovic M, Koonin EV (2014) Evolution of replicative DNA polymerases in archaea and their contributions to the eukaryotic replication machinery. Front Microbiol 5:354

    PubMed Central  PubMed  Google Scholar 

  • Mardis ER (2011) A decade’s perspective on DNA sequencing technology. Nature 470:198–203

    CAS  PubMed  Google Scholar 

  • Marsic D, Flaman JM, Ng JD (2008) New DNA polymerase from the hyperthermophilic marine archaeon Thermococcus thioreducens. Extremophiles 12:775–788

    CAS  PubMed  Google Scholar 

  • Matsui I, Urushibata Y, Shen Y, Matsui E, Yokoyama H (2011) Novel structure of an N-terminal domain that is crucial for the dimeric assembly and DNA-binding of an archaeal DNA polymerase D large subunit from Pyrococcus horikoshii. FEBS Lett 585:452–458

    CAS  PubMed  Google Scholar 

  • Mattila P, Korpela J, Tenkanen T, Pitkanen K (1991) Fidelity of DNA synthesis by the Thermococcus litoralis DNA polymerase--an extremely heat stable enzyme with proofreading activity. Nucleic Acids Res 19:4967–4973

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCormick F (1989) The polymerase chain reaction and cancer diagnosis. Cancer Cells 1:56–61

    CAS  PubMed  Google Scholar 

  • McDonald JP, Hall A, Gasparutto D, Cadet J, Ballantyne J, Woodgate R (2006) Novel thermostable Y-family polymerases: applications for the PCR amplification of damaged or ancient DNAs. Nucleic Acids Res 34:1102–1111

    CAS  PubMed Central  PubMed  Google Scholar 

  • Metzker ML (2010) Sequencing technologies - the next generation. Nat Rev Genet 11:31–46

    CAS  PubMed  Google Scholar 

  • Motea EA, Berdis AJ (2010) Terminal deoxynucleotidyl transferase: the story of a misguided DNA polymerase. Biochim Biophys Acta 1804:1151–1166

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51(Pt 1):263–273

    CAS  PubMed  Google Scholar 

  • Ohmori H, Friedberg EC, Fuchs RP, Goodman MF, Hanaoka F, Hinkle D, Kunkel TA, Lawrence CW, Livneh Z, Nohmi T, Prakash L, Prakash S, Todo T, Walker GC, Wang Z, Woodgate R (2001) The Y-family of DNA polymerases. Mol Cell 8:7–8

    CAS  PubMed  Google Scholar 

  • Pan M, Kelman LM, Kelman Z (2011) The archaeal PCNA proteins. Biochem Soc Trans 39:20–24

    CAS  PubMed  Google Scholar 

  • Pavlov AR, Belova GI, Kozyavkin SA, Slesarev AI (2002) Helix-hairpin-helix motifs confer salt resistance and processivity on chimeric DNA polymerases. Proc Natl Acad Sci U S A 99:13510–13515

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peng X, Basta T, Haring M, Garrett RA, Prangishvili D (2007) Genome of the Acidianus bottle-shaped virus and insights into the replication and packaging mechanisms. Virology 364:237–243

    CAS  PubMed  Google Scholar 

  • Ppyun H, Kim I, Cho SS, Seo KJ, Yoon K, Kwon ST (2012) Improved PCR performance using mutant Tpa-S DNA polymerases from the hyperthermophilic archaeon Thermococcus pacificus. J Biotechnol 164:363–370

    CAS  PubMed  Google Scholar 

  • Ramsay N, Jemth AS, Brown A, Crampton N, Dear P, Holliger P (2010) CyDNA: synthesis and replication of highly Cy-dye substituted DNA by an evolved polymerase. J Am Chem Soc 132:5096–5104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reeve MA, Fuller CW (1995) A novel thermostable polymerase for DNA sequencing. Nature 376:796–797

    CAS  PubMed  Google Scholar 

  • Reha-Krantz LJ, Nonay RL, Stocki S (1993) Bacteriophage T4 DNA polymerase mutations that confer sensitivity to the PPi analog phosphonoacetic acid. J Virol 67:60–66

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reha-Krantz LJ, Woodgate S, Goodman MF (2014) Engineering processive DNA polymerases with maximum benefit at minimum cost. Front Microbiol 5:380

    PubMed Central  PubMed  Google Scholar 

  • Rodriguez AC, Park HW, Mao C, Beese LS (2000) Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7. J Mol Biol 299:447–462

    CAS  PubMed  Google Scholar 

  • Rose EA (1991) Applications of the polymerase chain reaction to genome analysis. FASEB J 5:46–54

    CAS  PubMed  Google Scholar 

  • Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94:441–448

    CAS  PubMed  Google Scholar 

  • Sawano A, Miyawaki A (2000) Directed evolution of green fluorescent protein by a new versatile PCR strategy for site-directed and semi-random mutagenesis. Nucleic Acids Res 28:E78

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shen Y, Musti K, Hiramoto M, Kikuchi H, Kawarabayashi Y, Matsui I (2001) Invariant Asp-1122 and Asp-1124 are essential residues for polymerization catalysis of family D DNA polymerase from Pyrococcus horikoshii. J Biol Chem 276:27376–27383

    CAS  PubMed  Google Scholar 

  • Shuttleworth G, Fogg MJ, Kurpiewski MR, Jen-Jacobson L, Connolly BA (2004) Recognition of the pro-mutagenic base uracil by family B DNA polymerases from archaea. J Mol Biol 337:621–634

    CAS  PubMed  Google Scholar 

  • Silvian LF, Toth EA, Pham P, Goodman MF, Ellenberger T (2001) Crystal structure of a DinB family error-prone DNA polymerase from Sulfolobus solfataricus. Nat Struct Biol 8:984–989

    CAS  PubMed  Google Scholar 

  • Southworth MW, Kong H, Kucera RB, Ware J, Jannasch HW, Perler FB (1996) Cloning of thermostable DNA polymerases from hyperthermophilic marine Archaea with emphasis on Thermococcus sp. 9 degrees N-7 and mutations affecting 3′-5′ exonuclease activity. Proc Natl Acad Sci U S A 93:5281–5285

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun F, Huang L (2013) Sulfolobus chromatin proteins modulate strand displacement by DNA polymerase B1. Nucleic Acids Res 41:8182–8195

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tabor S, Richardson CC (1995) A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides. Proc Natl Acad Sci U S A 92:6339–6343

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takagi M, Nishioka M, Kakihara H, Kitabayashi M, Inoue H, Kawakami B, Oka M, Imanaka T (1997) Characterization of DNA polymerase from Pyrococcus sp. strain KOD1 and its application to PCR. Appl Environ Microbiol 63:4504–4510

    CAS  PubMed Central  PubMed  Google Scholar 

  • Terpe K (2013) Overview of thermostable DNA polymerases for classical PCR applications: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 97:10243–10254

    CAS  PubMed  Google Scholar 

  • Timinskas K, Balvociute M, Timinskas A, Venclovas C (2014) Comprehensive analysis of DNA polymerase III alpha subunits and their homologs in bacterial genomes. Nucleic Acids Res 42:1393–1413

    CAS  PubMed Central  PubMed  Google Scholar 

  • Urban A, Neukirchen S, Jaeger KE (1997) A rapid and efficient method for site-directed mutagenesis using one-step overlap extension PCR. Nucleic Acids Res 25:2227–2228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Sattar AK, Wang CC, Karam JD, Konigsberg WH, Steitz TA (1997) Crystal structure of a pol alpha family replication DNA polymerase from bacteriophage RB69. Cell 89:1087–1099

    CAS  PubMed  Google Scholar 

  • Wang Y, Prosen DE, Mei L, Sullivan JC, Finney M, Vander Horn PB (2004) A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro. Nucleic Acids Res 32:1197–1207

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu W, Jia Z, Liu P, Xie Z, Wei Q (2005) A novel PCR strategy for high-efficiency, automated site-directed mutagenesis. Nucleic Acids Res 33:e110

    PubMed Central  PubMed  Google Scholar 

  • Wynne SA, Pinheiro VB, Holliger P, Leslie AG (2013) Structures of an apo and a binary complex of an evolved archeal B family DNA polymerase capable of synthesising highly cy-dye labelled DNA. PLoS One 8:e70892

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wyss LA, Nilforoushan A, Eichenseher F, Suter U, Blatter N, Marx A, Sturla SJ (2015) Specific incorporation of an artificial nucleotide opposite a mutagenic DNA adduct by a DNA polymerase. J Am Chem Soc 137:30–33

    CAS  PubMed  Google Scholar 

  • Xia Y, Chu W, Qi Q, Xun L (2014) New insights into the QuikChange™ process guide the use of Phusion DNA polymerase for site-directed mutagenesis. Nucleic Acids Res 43:e12

    PubMed Central  PubMed  Google Scholar 

  • Xing X, Zhang L, Guo L, She Q, Huang L (2014) Sulfolobus replication factor C stimulates the activity of DNA polymerase B1. J Bacteriol 196:2367–2375

    PubMed Central  PubMed  Google Scholar 

  • Xu C, Maxwell BA, Brown JA, Zhang L, Suo Z (2009) Global conformational dynamics of a Y-family DNA polymerase during catalysis. PLoS Biol 7:e1000225

    PubMed Central  PubMed  Google Scholar 

  • Yamtich J, Sweasy JB (2010) DNA polymerase family X: function, structure, and cellular roles. Biochim Biophys Acta 1804:1136–1150

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang L, Brown JA, Newmister SA, Suo Z (2009) Polymerization fidelity of a replicative DNA polymerase from the hyperthermophilic archaeon Sulfolobus solfataricus P2. Biochemistry 48:7492–7501

    CAS  PubMed  Google Scholar 

  • Zhang L, Lou H, Guo L, Zhan Z, Duan Z, Guo X, Huang L (2010a) Accurate DNA synthesis by Sulfolobus solfataricus DNA polymerase B1 at high temperature. Extremophiles 14:107–117

    CAS  PubMed  Google Scholar 

  • Zhang Z, Gong Y, Guo L, Jiang T, Huang L (2010b) Structural insights into the interaction of the crenarchaeal chromatin protein Cren7 with DNA. Mol Microbiol 76:749–759

    CAS  PubMed  Google Scholar 

  • Zhang L, Radziwon A, Reha-Krantz LJ (2014) Targeted mutagenesis of a specific gene in yeast. Methods Mol Biol 1163:109–129

    CAS  PubMed  Google Scholar 

  • Zhou BL, Pata JD, Steitz TA (2001) Crystal structure of a DinB lesion bypass DNA polymerase catalytic fragment reveals a classic polymerase catalytic domain. Mol Cell 8:427–437

    CAS  PubMed  Google Scholar 

  • Zhu B (2014) Bacteriophage T7 DNA polymerase - sequenase. Front Microbiol 5:181

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. A Steinbüchel for his support in this review. We also thank Prof. Linda J Reha-Krantz for the critical reading of our manuscript. Research in Dr. Likui Zhang’s laboratory was supported by the National Natural Science Foundation of China grant (No. 41306131), the Provincial Natural Science Foundation of Jiangsu, China grants (Nos. BK20130440 and 13KJB180029), the open project of State Key Laboratory of Microbial Resources (No. SKLMR-20130603), the Open-end Funds of Jiangsu Key Laboratory of Marine Biotechnology, Huaihai Institute of Technology (No. 2014HS008), and the Yangzhou University College Student Science and Technology Innovation grant.

Conflict of interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Likui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Kang, M., Xu, J. et al. Archaeal DNA polymerases in biotechnology. Appl Microbiol Biotechnol 99, 6585–6597 (2015). https://doi.org/10.1007/s00253-015-6781-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6781-0

Keywords

Navigation