Skip to main content

Archaeal DNA Polymerases: Enzymatic Abilities, Coordination, and Unique Properties

  • Chapter
  • First Online:
Nucleic Acid Polymerases

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 30))

Abstract

DNA polymerases from archaea coordinate both replication and repair activities under extreme conditions. Traditional DNA polymerase families B and Y are represented, but an entire phylum of archaea contains members from the unique D-family. These model archaeal polymerases from each family have be exploited for a variety of biotechnology applications but have also provided great insight into kinetic mechanisms, structural properties, conformational changes, and protein interactions with DNA polymerases from other domains. Interestingly, individual polymerase members have revealed some unique features including template uracil recognition, more open active sites, novel motifs, and direct polymerase interactions that modulate replication and repair in these simpler organisms. How multiple polymerases coordinate synthesis on the leading and lagging strands and replication or repair duties is an ongoing fundamental question in archaea. Nevertheless, their intrinsic enzymatic properties are fascinating and continue to shape and influence research avenues for all DNA polymerases. The ability to regulate robust and accurate DNA synthesis through specific and loosely associate oligomeric states and protein interactions maintains a high degree of genomic stability in spite of harsh environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BER:

Base excision repair

NER:

Nucleotide excision repair

NTP:

Nucleotide triphosphate

Pab :

Pyrococcus abyssi

PCNA:

Proliferating cellular nuclear antigen

Pfu :

Pyrococcus furiosus

Pho :

Pyrococcus horikoshii

Pol:

Polymerase

PPi :

Pyrophosphate

RFC:

Replication factor C

Sac :

Sulfolobus acidocaldarius

Sso :

Sulfolobus solfataricus

Tgo :

Thermococcus gorgonarius

UV:

Ultraviolet

References

  • Augustin MA, Huber R, Kaiser JT (2001) Crystal structure of a DNA-dependent RNA polymerase (DNA primase). Nat Struct Biol 8(1):57–61

    PubMed  CAS  Google Scholar 

  • Bauer RJ, Begley MT, Trakselis MA (2012) Kinetics and fidelity of polymerization by DNA polymerase III from Sulfolobus solfataricus. Biochemistry 51(9):1996–2007

    PubMed  CAS  Google Scholar 

  • Beattie TR, Bell SD (2012) Coordination of multiple enzyme activities by a single PCNA in archaeal Okazaki fragment maturation. EMBO J 31(6):1556–1567

    PubMed  CAS  Google Scholar 

  • Bernad A, Blanco L, Salas M (1990) Site-directed mutagenesis of the YCDTDS amino acid motif of the Φ29 DNA polymerase. Gene 94(1):45–51

    PubMed  CAS  Google Scholar 

  • Berquist BR, DasSarma P, DasSarma S (2007) Essential and non-essential DNA replication genes in the model halophilic Archaeon, Halobacterium sp. NRC-1. BMC Genet 8(31)

    Google Scholar 

  • Bohlke K, Pisani FM, Vorgias CE, Frey B, Sobek H, Rossi M, Antranikian G (2000) PCR performance of the B-type DNA polymerase from the thermophilic euryarchaeon Thermococcus aggregans improved by mutations in the Y-GG/A motif. Nucleic Acids Res 28(20):3910–3917

    PubMed  CAS  Google Scholar 

  • Boudsocq F, Iwai S, Hanaoka F, Woodgate R (2001) Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4): an archaeal DinB-like DNA polymerase with lesion-bypass properties akin to eukaryotic polη. Nucleic Acids Res 29(22):4607–4616

    PubMed  CAS  Google Scholar 

  • Boudsocq F, Kokoska RJ, Plosky BS, Vaisman A, Ling H, Kunkel TA, Yang W, Woodgate R (2004) Investigating the role of the little finger domain of Y-family DNA polymerases in low fidelity synthesis and translesion replication. J Biol Chem 279(31):32932–32940

    PubMed  CAS  Google Scholar 

  • Brown JA, Suo Z (2009) Elucidating the kinetic mechanism of DNA polymerization catalyzed by Sulfolobus solfataricus P2 DNA polymerase B1. Biochemistry 48(31):7502–7511

    PubMed  CAS  Google Scholar 

  • Brown JA, Suo Z (2011) Unlocking the sugar “steric gate” of DNA polymerases. Biochemistry 50(7):1135–1142

    PubMed  CAS  Google Scholar 

  • Bunting KA, Roe SM, Pearl LH (2003) Structural basis for recruitment of translesion DNA polymerase Pol IV/DinB to the beta-clamp. EMBO J 22(21):5883–5892

    PubMed  CAS  Google Scholar 

  • Cann IKO, Komori K, Toh H, Kanai S, Ishino Y (1998) A heterodimeric DNA polymerase: evidence that members of Euryarchaeota possess a distinct DNA polymerase. Proc Natl Acad Sci USA 95(24):14250–14255

    PubMed  CAS  Google Scholar 

  • Castrec B, Rouillon C, Henneke G, Flament D, Querellou J, Raffin J-P (2009) Binding to PCNA in euryarchaeal DNA replication requires two PIP motifs for DNA polymerase D and one PIP motif for DNA polymerase B. J Mol Biol 394(2):209–218

    PubMed  CAS  Google Scholar 

  • Choi JY, Eoff RL, Pence MG, Wang J, Martin MV, Kim EJ, Folkmann LM, Guengerich FP (2011) Roles of the four DNA polymerases of the crenarchaeon Sulfolobus solfataricus and accessory proteins in DNA replication. J Biol Chem 286(36):31180–31193

    PubMed  CAS  Google Scholar 

  • Copeland WC, Wang TS (1993) Mutational analysis of the human DNA polymerase alpha. The most conserved region in alpha-like DNA polymerases is involved in metal-specific catalysis. J Biol Chem 268(15):11028–11040

    PubMed  CAS  Google Scholar 

  • Cubonova L, Richardson T, Burkhart BW, Kelman Z, Connolly BA, Reeve JN, Santangelo TJ (2013) Archaeal DNA polymerase D but not DNA polymerase B is required for genome replication in Thermococcus kodakarensis. J Bacteriol 195:2322–2328

    PubMed  CAS  Google Scholar 

  • De Felice M, Medagli B, Esposito L, De Falco M, Pucci B, Rossi M, Gruz P, Nohmi T, Pisani FM (2007) Biochemical evidence of a physical interaction between Sulfolobus solfataricus B-family and Y-family DNA polymerases. Extremophiles 11(2):277–282

    PubMed  Google Scholar 

  • Delucia AM, Grindley ND, Joyce CM (2003) An error-prone family Y DNA polymerase (DinB homolog from Sulfolobus solfataricus) uses a ‘steric gate’ residue for discrimination against ribonucleotides. Nucleic Acids Res 31(14):4129–4137

    PubMed  CAS  Google Scholar 

  • Dionne I, Nookala RK, Jackson SP, Doherty AJ, Bell SD (2003) A heterotrimeric PCNA in the hyperthermophilic archaeon Sulfolobus solfataricus. Mol Cell 11(1):275–282

    PubMed  CAS  Google Scholar 

  • Dionne I, Brown NJ, Woodgate R, Bell SD (2008) On the mechanism of loading the PCNA sliding clamp by RFC. Mol Microbiol 68(1):216–222

    PubMed  CAS  Google Scholar 

  • Dominguez O, Ruiz JF, de Lain LT, Garcia-Diaz M, Gonzalez MA, Kirchhoff T, Martinez A, Bernad A, Blanco L (2000) DNA polymerase mu (Pol mu), homologous to TdT, could act as a DNA mutator in eukaryotic cells. EMBO J 19(7):1731–1742

    PubMed  CAS  Google Scholar 

  • Duggin IG, McCallum SA, Bell SD (2008) Chromosome replication dynamics in the archaeon Sulfolobus acidocaldarius. Proc Natl Acad Sci USA 105(43):16737–16742

    PubMed  CAS  Google Scholar 

  • Edgell DR, Klenk HP, Doolittle WF (1997) Gene duplications in evolution of archaeal family B DNA polymerases. J Bacteriol 179(8):2632–2640

    PubMed  CAS  Google Scholar 

  • Edgell DR, Malik SB, Doolittle WF (1998) Evidence of independent gene duplications during the evolution of archaeal and eukaryotic family B DNA polymerases. Mol Biol Evol 15(9):1207–1217

    PubMed  CAS  Google Scholar 

  • Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y, Randau L, Hedlund BP, Brochier-Armanet C, Kunin V, Anderson I, Lapidus A, Goltsman E, Barry K, Koonin EV, Hugenholtz P, Kyrpides N, Wanner G, Richardson P, Keller M, Stetter KO (2008) A korarchaeal genome reveals insights into the evolution of the Archaea. Proc Natl Acad Sci USA 105(23):8102–8107

    PubMed  CAS  Google Scholar 

  • Fiala KA, Suo Z (2007) Sloppy bypass of an abasic lesion catalyzed by a Y-family DNA polymerase. J Biol Chem 282(11):8199–8206

    PubMed  CAS  Google Scholar 

  • Fiala KA, Hypes CD, Suo Z (2007) Mechanism of abasic lesion bypass catalyzed by a Y-family DNA polymerase. J Biol Chem 282(11):8188–8198

    PubMed  CAS  Google Scholar 

  • Fidalgo da SE, Reha-Krantz LJ (2007) DNA polymerase proofreading: active site switching catalyzed by the bacteriophage T4 DNA polymerase. Nucleic Acids Res 35(16):5452–5463

    Google Scholar 

  • Fogg MJ, Pearl LH, Connolly BA (2002) Structural basis for uracil recognition by archaeal family B DNA polymerases. Nat Struct Biol 9(12):922–927

    PubMed  CAS  Google Scholar 

  • Frols S, Gordon PM, Panlilio MA, Duggin IG, Bell SD, Sensen CW, Schleper C (2007) Response of the hyperthermophilic archaeon Sulfolobus solfataricus to UV damage. J Bacteriol 189(23):8708–8718

    PubMed  CAS  Google Scholar 

  • Frols S, White MF, Schleper C (2009) Reactions to UV damage in the model archaeon Sulfolobus solfataricus. Biochem Soc Trans 37(Pt 1):36–41

    PubMed  Google Scholar 

  • Furukohri A, Goodman MF, Maki H (2008) A dynamic polymerase exchange with Escherichia coli DNA polymerase IV replacing DNA polymerase III on the sliding clamp. J Biol Chem 283(17):11260–11269

    PubMed  CAS  Google Scholar 

  • Gotz D, Paytubi S, Munro S, Lundgren M, Bernander R, White MF (2007) Responses of hyperthermophilic crenarchaea to UV irradiation. Genome Biol 8(10):R220

    PubMed  Google Scholar 

  • Gouge J, Ralec C, Henneke G, Delarue M (2012) Molecular recognition of canonical and deaminated bases by P. abyssi family B DNA polymerase. J Mol Biol 423(3):315–336

    PubMed  CAS  Google Scholar 

  • Greagg MA, Fogg MJ, Panayotou G, Evans SJ, Connolly BA, Pearl LH (1999) A read-ahead function in archaeal DNA polymerases detects promutagenic template-strand uracil. Proc Natl Acad Sci USA 96(16):9045–9050

    PubMed  CAS  Google Scholar 

  • Grogan DW, Carver GT, Drake JW (2001) Genetic fidelity under harsh conditions: analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Proc Natl Acad Sci USA 98(14):7928–7933

    PubMed  CAS  Google Scholar 

  • Grúz P, Pisani FM, Shimizu M, Yamada M, Hayashi I, Morikawa K, Nohmi T (2001) Synthetic activity of Sso DNA polymerase Y1, an archaeal DinB-like DNA polymerase, is stimulated by processivity factors proliferating cell nuclear antigen and replication factor C. J Biol Chem 276(50):47394–47401

    PubMed  Google Scholar 

  • Hallam SJ, Konstantinidis KT, Putnam N, Schleper C, Watanabe Y-i, Sugahara J, Preston C, de la Torre J, Richardson PM, DeLong EF (2006) Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci USA 103(48):18296–18301

    PubMed  CAS  Google Scholar 

  • Hashimoto H, Nishioka M, Fujiwara S, Takagi M, Imanaka T, Inoue T, Kai Y (2001) Crystal structure of DNA polymerase from hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1. J Mol Biol 306(3):469–477

    PubMed  CAS  Google Scholar 

  • Heltzel JM, Maul RW, Scouten Ponticelli SK, Sutton MD (2009) A model for DNA polymerase switching involving a single cleft and the rim of the sliding clamp. Proc Natl Acad Sci USA 106(31):12664–12669

    PubMed  CAS  Google Scholar 

  • Henneke G, Flament D, Hubscher U, Querellou J, Raffin JP (2005) The hyperthermophilic euryarchaeota Pyrococcus abyssi likely requires the two DNA polymerases D and B for DNA replication. J Mol Biol 350(1):53–64

    PubMed  CAS  Google Scholar 

  • Hopfner KP, Eichinger A, Engh RA, Laue F, Ankenbauer W, Huber R, Angerer B (1999) Crystal structure of a thermostable type B DNA polymerase from Thermococcus gorgonarius. Proc Natl Acad Sci USA 96(7):3600–3605

    PubMed  CAS  Google Scholar 

  • Hu J, Guo L, Wu K, Liu B, Lang S, Huang L (2012) Template-dependent polymerization across discontinuous templates by the heterodimeric primase from the hyperthermophilic archaeon Sulfolobus solfataricus. Nucleic Acids Res 40(8):3470–3483

    PubMed  CAS  Google Scholar 

  • Hubscher U, Maga G, Spadari S (2002) Eukaryotic DNA polymerases. Annu Rev Biochem 71:133–163

    PubMed  CAS  Google Scholar 

  • Indiani C, McInerney P, Georgescu R, Goodman MF, O’Donnell M (2005) A sliding-clamp toolbelt binds high- and low-fidelity DNA polymerases simultaneously. Mol Cell 19(6):805–815

    PubMed  CAS  Google Scholar 

  • Ishino Y, Komori K, Cann IKO, Koga Y (1998) A novel DNA polymerase family found in Archaea. J Bacteriol 180(8):2232–2236

    PubMed  CAS  Google Scholar 

  • Ishmael FT, Trakselis MA, Benkovic SJ (2003) Protein-protein interactions in the bacteriophage T4 replisome. The leading strand holoenzyme is physically linked to the lagging strand holoenzyme and the primosome. J Biol Chem 278(5):3145–3152

    PubMed  CAS  Google Scholar 

  • Iwai T, Kurosawa N, Itoh YH, Kimura N, Horiuchi T (2000) Sequence analysis of three family B DNA polymerases from the thermoacidophilic crenarchaeon Sulfurisphaera ohwakuensis. DNA Res 7(4):243–251

    PubMed  CAS  Google Scholar 

  • Jeruzalmi D, O’Donnell M, Kuriyan J (2002) Clamp loaders and sliding clamps. Curr Opin Struct Biol 12(2):217–224

    PubMed  CAS  Google Scholar 

  • Johnson RE, Prakash L, Prakash S (2005) Distinct mechanisms of cis-syn thymine dimer bypass by Dpo4 and DNA polymerase η. Proc Natl Acad Sci USA 102(35):12359–12364

    PubMed  CAS  Google Scholar 

  • Kelman Z, White MF (2005) Archaeal DNA replication and repair. Curr Opin Microbiol 8(6):669–676

    PubMed  CAS  Google Scholar 

  • Kim SW, Kim D-U, Kim JK, Kang L-W, Cho H-S (2008) Crystal structure of Pfu, the high fidelity DNA polymerase from Pyrococcus furiosus. Int J Biol Macromol 42(4):356–361

    PubMed  Google Scholar 

  • Kirouac KN, Suo Z, Ling H (2011) Structural mechanism of ribonucleotide discrimination by a Y-family DNA polymerase. J Mol Biol 407(3):382–390

    PubMed  CAS  Google Scholar 

  • Kunkel TA, Bebenek K (2000) DNA replication fidelity. Annu Rev Biochem 69:497–529

    PubMed  CAS  Google Scholar 

  • Kuroita T, Matsumura H, Yokota N, Kitabayashi M, Hashimoto H, Inoue T, Imanaka T, Kai Y (2005) Structural mechanism for coordination of proofreading and polymerase activities in archaeal DNA polymerases. J Mol Biol 351(2):291–298

    PubMed  CAS  Google Scholar 

  • Lao-Sirieix SH, Bell SD (2004) The heterodimeric primase of the hyperthermophilic archaeon Sulfolobus solfataricus possesses DNA and RNA primase, polymerase and 3′-terminal nucleotidyl transferase activities. J Mol Biol 344(5):1251–1263

    PubMed  CAS  Google Scholar 

  • Lao-Sirieix SH, Nookala RK, Roversi P, Bell SD, Pellegrini L (2005) Structure of the heterodimeric core primase. Nat Struct Mol Biol 12(12):1137–1144

    PubMed  CAS  Google Scholar 

  • Le Breton M, Henneke G, Norais C, Flament D, Myllykallio H, Querellou J, Raffin JP (2007) The heterodimeric primase from the euryarchaeon Pyrococcus abyssi: a multifunctional enzyme for initiation and repair? J Mol Biol 374(5):1172–1185

    PubMed  Google Scholar 

  • Lin LJ, Yoshinaga A, Lin Y, Guzman C, Chen YH, Mei S, Lagunas AM, Koike S, Iwai S, Spies MA, Nair SK, Mackie RI, Ishino Y, Cann IK (2010) Molecular analyses of an unusual translesion DNA polymerase from Methanosarcina acetivorans C2A. J Mol Biol 397(1):13–30

    PubMed  CAS  Google Scholar 

  • Lin HK, Chase SF, Laue TM, Jen-Jacobson L, Trakselis MA (2012) Differential temperature-dependent multimeric assemblies of replication and repair polymerases on DNA increase processivity. Biochemistry 51(37):7367–7382

    PubMed  CAS  Google Scholar 

  • Ling H, Boudsocq F, Woodgate R, Yang W (2001) Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell 107(1):91–102

    PubMed  CAS  Google Scholar 

  • Ling H, Boudsocq F, Woodgate R, Yang W (2004a) Snapshots of replication through an abasic lesion; structural basis for base substitutions and frameshifts. Mol Cell 13(5):751–762

    PubMed  CAS  Google Scholar 

  • Ling H, Sayer JM, Plosky BS, Yagi H, Boudsocq F, Woodgate R, Jerina DM, Yang W (2004b) Crystal structure of a benzo[a]pyrene diol epoxide adduct in a ternary complex with a DNA polymerase. Proc Natl Acad Sci USA 101(8):2265–2269

    PubMed  CAS  Google Scholar 

  • Loparo JJ, Kulczyk AW, Richardson CC, van Oijen AM (2011) Simultaneous single-molecule measurements of phage T7 replisome composition and function reveal the mechanism of polymerase exchange. Proc Natl Acad Sci USA 108(9):3584–3589

    PubMed  CAS  Google Scholar 

  • Lundberg KS, Shoemaker DD, Adams MW, Short JM, Sorge JA, Mathur EJ (1991) High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene 108(1):1–6

    PubMed  CAS  Google Scholar 

  • Maga G, Ramadan K, Locatelli GA, Shevelev I, Spadari S, Hubscher U (2005) DNA elongation by the human DNA polymerase lambda polymerase and terminal transferase activities are differentially coordinated by proliferating cell nuclear antigen and replication protein A. J Biol Chem 280(3):1971–1981

    PubMed  CAS  Google Scholar 

  • Matsui I, Urushibata Y, Shen Y, Matsui E, Yokoyama H (2011) Novel structure of an N-terminal domain that is crucial for the dimeric assembly and DNA-binding of an archaeal DNA polymerase D large subunit from Pyrococcus horikoshii. FEBS Lett 585(3):452–458

    PubMed  CAS  Google Scholar 

  • Maxwell BA, Suo Z (2013) Single-molecule investigation of substrate binding kinetics and protein conformational dynamics of a B-family replicative DNA polymerase. J Biol Chem 288:11590–11600

    PubMed  CAS  Google Scholar 

  • Mayanagi K, Kiyonari S, Nishida H, Saito M, Kohda D, Ishino Y, Shirai T, Morikawa K (2011) Architecture of the DNA polymerase B-proliferating cell nuclear antigen (PCNA)-DNA ternary complex. Proc Natl Acad Sci USA 108:1845–1849

    PubMed  CAS  Google Scholar 

  • McCulloch SD, Kunkel TA (2008) The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res 18(1):148–161

    PubMed  CAS  Google Scholar 

  • McInerney P, Johnson A, Katz F, O’Donnell M (2007) Characterization of a triple DNA polymerase replisome. Mol Cell 27(4):527–538

    PubMed  CAS  Google Scholar 

  • Mikheikin AL, Lin HK, Mehta P, Jen-Jacobson L, Trakselis MA (2009) A trimeric DNA polymerase complex increases the native replication processivity. Nucleic Acids Res 37(21):7194–7205

    PubMed  CAS  Google Scholar 

  • Mills KV, Manning JS, Garcia AM, Wuerdeman LA (2004) Protein splicing of a Pyrococcus abyssi intein with a C-terminal glutamine. J Biol Chem 279(20):20685–20691

    PubMed  CAS  Google Scholar 

  • Nishida H, Mayanagi K, Kiyonari S, Sato Y, Oyama T, Ishino Y, Morikawa K (2009) Structural determinant for switching between the polymerase and exonuclease modes in the PCNA-replicative DNA polymerase complex. Proc Natl Acad Sci USA 106(49):20693–20698

    PubMed  CAS  Google Scholar 

  • Nowosielska A, Janion C, Grzesiuk E (2004) Effect of deletion of SOS-induced polymerases, pol II, IV, and V, on spontaneous mutagenesis in Escherichia coli mutD5. Environ Mol Mutagen 43(4):226–234

    PubMed  CAS  Google Scholar 

  • Palud A, Villani G, L’Haridon S, Querellou J, Raffin JP, Henneke G (2008) Intrinsic properties of the two replicative DNA polymerases of Pyrococcus abyssi in replicating abasic sites: possible role in DNA damage tolerance? Mol Microbiol 70(3):746–761

    PubMed  CAS  Google Scholar 

  • Pascal JM, Tsodikov OV, Hura GL, Song W, Cotner EA, Classen S, Tomkinson AE, Tainer JA, Ellenberger T (2006) A flexible interface between DNA ligase and PCNA supports conformational switching and efficient ligation of DNA. Mol Cell 24(2):279–291

    PubMed  CAS  Google Scholar 

  • Paulus H (2000) Protein splicing and related forms of protein autoprocessing. Annu Rev Biochem 69(1):447–496

    PubMed  CAS  Google Scholar 

  • Perler FB (2005) Protein splicing mechanisms and applications. IUBMB Life 57(7):469–476

    PubMed  CAS  Google Scholar 

  • Perler FB, Comb DG, Jack WE, Moran LS, Qiang B, Kucera RB, Benner J, Slatko BE, Nwankwo DO, Hempstead SK (1992) Intervening sequences in an archaea DNA polymerase gene. Proc Natl Acad Sci USA 89(12):5577–5581

    PubMed  CAS  Google Scholar 

  • Perler FB, Olsen GJ, Adam E (1997) Compilation and analysis of intein sequences. Nucleic Acids Res 25(6):1087–1093

    PubMed  CAS  Google Scholar 

  • Perlow-Poehnelt RA, Likhterov I, Scicchitano DA, Geacintov NE, Broyde S (2004) The spacious active site of a Y-family DNA polymerase facilitates promiscuous nucleotide incorporation opposite a bulky carcinogen-DNA adduct. J Biol Chem 279(35):36951–36961

    PubMed  CAS  Google Scholar 

  • Pisani FM, De FM, Manco G, Rossi M (1998) Domain organization and biochemical features of Sulfolobus solfataricus DNA polymerase. Extremophiles 2(3):171–177

    PubMed  CAS  Google Scholar 

  • Pisani FM, De FM, Carpentieri F, Rossi M (2000) Biochemical characterization of a clamp-loader complex homologous to eukaryotic replication factor C from the hyperthermophilic archaeon Sulfolobus solfataricus. J Mol Biol 301(1):61–73

    PubMed  CAS  Google Scholar 

  • Prakash S, Johnson RE, Prakash L (2005) Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem 74:317–353

    PubMed  CAS  Google Scholar 

  • Purohit V, Grindley NDF, Joyce CM (2003) Use of 2-aminopurine fluorescence to examine conformational changes during nucleotide incorporation by DNA polymerase I (klenow fragment). Biochemistry 42(34):10200–10211

    PubMed  CAS  Google Scholar 

  • Rechkoblit O, Malinina L, Cheng Y, Kuryavyi V, Broyde S, Geacintov NE, Patel DJ (2006) Stepwise translocation of Dpo4 polymerase during error-free bypass of an oxoG lesion. PLoS Biol 4(1):e11

    PubMed  Google Scholar 

  • Rechkoblit O, Kolbanovskiy A, Malinina L, Geacintov NE, Broyde S, Patel DJ (2010) Mechanism of error-free and semitargeted mutagenic bypass of an aromatic amine lesion by Y-family polymerase Dpo4. Nat Struct Mol Biol 17(3):379–388

    PubMed  CAS  Google Scholar 

  • Richardson TT, Wu X, Keith BJ, Heslop P, Jones AC, Connolly BA (2013) Unwinding of primer-templates by archaeal family-B DNA polymerases in response to template-strand uracil. Nucleic Acids Res 41(4):2466–2478

    PubMed  CAS  Google Scholar 

  • Robinson NP, Bell SD (2005) Origins of DNA replication in the three domains of life. FEBS J 272(15):3757–3766

    PubMed  CAS  Google Scholar 

  • Rogozin IB, Makarova KS, Pavlov YI, Koonin EV (2008) A highly conserved family of inactivated archaeal B family DNA polymerases. Biol Direct 3:32

    PubMed  Google Scholar 

  • Rouillon C, Henneke G, Flament D, Querellou J, Raffin J-P (2007) DNA polymerase switching on homotrimeric PCNA at the replication fork of the euryarchaea Pyrococcus abyssi. J Mol Biol 369(2):343–355

    PubMed  CAS  Google Scholar 

  • Sakofsky CJ, Foster PL, Grogan DW (2012) Roles of the Y-family DNA polymerase Dbh in accurate replication of the Sulfolobus genome at high temperature. DNA Repair (Amst) 11(4):391–400

    CAS  Google Scholar 

  • Sarmiento F, Mrazek J, Whitman WB (2013) Genome-scale analysis of gene function in the hydrogenotrophic methanogenic archaeon Methanococcus maripaludis. Proc Natl Acad Sci USA 110(12):4726–4731

    PubMed  CAS  Google Scholar 

  • Saves I, Ozanne V, Dietrich J, Masson JM (2000) Inteins of Thermococcus fumicolans DNA polymerase are endonucleases with distinct enzymatic behaviors. J Biol Chem 275(4):2335–2341

    PubMed  CAS  Google Scholar 

  • Savino C, Federici L, Johnson KA, Vallone B, Nastopoulos V, Rossi M, Pisani FM, Tsernoglou D (2004) Insights into DNA replication: the crystal structure of DNA polymerase B1 from the archaeon Sulfolobus solfataricus. Structure 12(11):2001–2008

    PubMed  CAS  Google Scholar 

  • She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CC, Clausen IG, Curtis BA, De MA, Erauso G, Fletcher C, Gordon PM, Heikamp-de JI, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett RA, Ragan MA, Sensen CW, Van der OJ (2001) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 98(14):7835–7840

    PubMed  CAS  Google Scholar 

  • Shen Y, Tang XF, Yokoyama H, Matsui E, Matsui I (2004) A 21-amino acid peptide from the cysteine cluster II of the family D DNA polymerase from Pyrococcus horikoshii stimulates its nuclease activity which is Mre11-like and prefers manganese ion as the cofactor. Nucleic Acids Res 32(1):158–168

    PubMed  CAS  Google Scholar 

  • Sherrer SM, Brown JA, Pack LR, Jasti VP, Fowler JD, Basu AK, Suo Z (2009) Mechanistic studies of the bypass of a bulky single-base lesion catalyzed by a Y-family DNA polymerase. J Biol Chem 284(10):6379–6388

    PubMed  CAS  Google Scholar 

  • Sherrer SM, Maxwell BA, Pack LR, Fiala KA, Fowler JD, Zhang J, Suo Z (2012) Identification of an unfolding intermediate for a DNA lesion bypass polymerase. Chem Res Toxicol 25(7):1531–1540

    PubMed  CAS  Google Scholar 

  • Strauss BS (1991) The ‘A rule’ of mutagen specificity: a consequence of DNA polymerase bypass of non-instructional lesions? Bioessays 13(2):79–84

    PubMed  CAS  Google Scholar 

  • Tahirov TH, Makarova KS, Rogozin IB, Pavlov YI, Koonin EV (2009) Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol ε and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors. Biol Direct 4(1):11

    PubMed  Google Scholar 

  • Tori K, Kimizu M, Ishino S, Ishino Y (2007) DNA polymerases BI and D from the hyperthermophilic archaeon Pyrococcus furiosus both bind to proliferating cell nuclear antigen with their C-terminal PIP-box motifs. J Bacteriol 189(15):5652–5657

    PubMed  CAS  Google Scholar 

  • Truniger V, Lazaro JM, Salas M, Blanco L (1996) A DNA binding motif coordinating synthesis and degradation in proofreading DNA polymerases. EMBO J 15(13):3430–3441

    PubMed  CAS  Google Scholar 

  • Uemori T, Sato Y, Kato I, Doi H, Ishino Y (1997) A novel DNA polymerase in the hyperthermophilic archaeon, Pyrococcus furiosus: gene cloning, expression, and characterization. Genes Cells 2(8):499–512

    PubMed  CAS  Google Scholar 

  • Vaisman A, Ling H, Woodgate R, Yang W (2005) Fidelity of Dpo4: effect of metal ions, nucleotide selection and pyrophosphorolysis. EMBO J 24(17):2957–2967

    PubMed  CAS  Google Scholar 

  • Warbrick E (1998) PCNA binding through a conserved motif. Bioessays 20(3):195–199

    PubMed  CAS  Google Scholar 

  • Waters E, Hohn MJ, Ahel I, Graham DE, Adams MD, Barnstead M, Beeson KY, Bibbs L, Bolanos R, Keller M, Kretz K, Lin X, Mathur E, Ni J, Podar M, Richardson T, Sutton GG, Simon M, Söll D, Stetter KO, Short JM, Noordewier M (2003) The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci USA 100(22):12984–12988

    PubMed  CAS  Google Scholar 

  • Wilson RC, Jackson MA, Pata JD (2013) Y-family polymerase conformation is a major determinant of fidelity and translesion specificity. Structure 21(1):20–31

    PubMed  CAS  Google Scholar 

  • Wong JH, Fiala KA, Suo Z, Ling H (2008) Snapshots of a Y-family DNA polymerase in replication: substrate-induced conformational transitions and implications for fidelity of Dpo4. J Mol Biol 379(2):317–330

    PubMed  CAS  Google Scholar 

  • Wu Y, Wilson RC, Pata JD (2011) The Y-family DNA polymerase Dpo4 uses a template slippage mechanism to create single-base deletions. J Bacteriol 193(10):2630–2636

    PubMed  CAS  Google Scholar 

  • Xing G, Kirouac K, Shin YJ, Bell SD, Ling H (2009) Structural insight into recruitment of translesion DNA polymerase Dpo4 to sliding clamp PCNA. Mol Microbiol 71(3):678–691

    PubMed  CAS  Google Scholar 

  • Yamasaki K, Urushibata Y, Yamasaki T, Arisaka F, Matsui I (2010) Solution structure of the N-terminal domain of the archaeal D-family DNA polymerase small subunit reveals evolutionary relationship to eukaryotic B-family polymerases. FEBS Lett 584(15):3370–3375

    PubMed  CAS  Google Scholar 

  • Yang J, Zhuang Z, Roccasecca RM, Trakselis MA, Benkovic SJ (2004) The dynamic processivity of the T4 DNA polymerase during replication. Proc Natl Acad Sci USA 101(22):8289–8294

    PubMed  CAS  Google Scholar 

  • Yutin N, Makarova KS, Mekhedov SL, Wolf YI, Koonin EV (2008) The deep archaeal roots of eukaryotes. Mol Biol Evol 25(8):1619–1630

    PubMed  CAS  Google Scholar 

  • Zang H, Irimia A, Choi J-Y, Angel KC, Loukachevitch LV, Egli M, Guengerich FP (2006) Efficient and high fidelity Incorporation of dCTP opposite 7,8-dihydro-8-oxodeoxyguanosine by Sulfolobus solfataricus DNA polymerase Dpo4. J Biol Chem 281(4):2358–2372

    PubMed  CAS  Google Scholar 

  • Zhang L, Brown JA, Newmister SA, Suo Z (2009) Polymerization fidelity of a replicative DNA polymerase from the hyperthermophilic archaeon Sulfolobus solfataricus P2. Biochemistry 48(31):7492–7501

    PubMed  CAS  Google Scholar 

  • Zuo Z, Lin HK, Trakselis MA (2011) Strand annealing and terminal transferase activities of a B-family DNA polymerase. Biochemistry 50(23):5379–5390

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Trakselis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trakselis, M.A., Bauer, R.J. (2014). Archaeal DNA Polymerases: Enzymatic Abilities, Coordination, and Unique Properties. In: Murakami, K., Trakselis, M. (eds) Nucleic Acid Polymerases. Nucleic Acids and Molecular Biology, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39796-7_6

Download citation

Publish with us

Policies and ethics