Skip to main content
Log in

Antimicrobials, drug discovery, and genome mining

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Over the years, antibiotics have provided an effective treatment for a number of microbial diseases. However recently, there has been an increase in resistant microorganisms that have adapted to our current antibiotics. One of the most dangerous pathogens is methicillin-resistant Staphylococcus aureus (MRSA). With the rise in the cases of MRSA and other resistant pathogens such as vancomycin-resistant Staphylococcus aureus, the need for new antibiotics increases every day. Many challenges face the discovery and development of new antibiotics, making it difficult for these new drugs to reach the market, especially since many of the pharmaceutical companies have stopped searching for antibiotics. With the advent of genome sequencing, new antibiotics are being found by the techniques of genome mining, offering hope for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Infectious Disease Society of America (2004) Bad bugs, no drugs: as antibiotic discovery stagnates… a public health crisis brews. pp. 1–35 http://www.fda.gov/ohrms/dockets/dockets/04s0233/04s-0233-c000005-03-IDSA-vol1.pdf

  • ScienceDaily (2010) Mining bacterial genome reveals valuable “hidden” drugs. Aug. 2. http://www.sciencedaily.com/releases/2010/08/100801201329.htm

  • CDC (2012) CDC reminds clinical laboratories and healthcare infection preventionists of their role in the search and containment of vancomycin-resistant Staphylococcus aureus (VRSA). http://www.cdc.gov/HAI/settings/lab/vrsa_lab_search_containment.html

  • Baltz RH (2008) Renaissance in antibacterial discovery from actinomycetes. Curr Opin Pharmacol 8:557–563

    Article  CAS  Google Scholar 

  • Bergmann S, Shümann J, Scherlach K, Lange C, Brakhage AA, Hertweck C (2007) Genomics-driven discovery of PKS-NPRS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol 3:213–217

    Article  CAS  Google Scholar 

  • Bok JW, Hoffmeister D, Maggio-Hall LA, Murillo R, Glasner JD, Keller NP (2006) Genomic mining for Aspergillus natural products. Chem Biol 13:1–7

    Article  Google Scholar 

  • Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites—strategies to activate silent gene clusters. Fungal Genet Biol 48:15–22

    Article  CAS  Google Scholar 

  • Challis GL, Ravel J (2000) Coelichelin, a new peptide siderophore encoded by the Streptomyces coelicolor genome: structure prediction from the sequence of its non-ribosomal peptide synthetase. FEMS Microbiol Lett 187:111–114

    Article  CAS  Google Scholar 

  • Challis GL (2008) Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology 154:1555–1569

    Article  CAS  Google Scholar 

  • Chiang Y, Szewczyk E, Nayak T, Davidson AD, Sanchez JF, Lo H, Ho W, Simityan H, Kuo E, Praseuth A, Watanabe K, Oakley BR, Wang CCC (2008) Molecular genetic mining of the Aspergillus secondary metabolome: discovery of the emericellamide biosynthetic pathway. Chem Biol 15:527–532

    Article  CAS  Google Scholar 

  • Christoffersen RE (2006) Antibiotics—an investment worth making? Nat Biotechnol 24:1512–1514

    Article  CAS  Google Scholar 

  • Clatworthy AE, Pierson E, Hung DT (2007) Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 3:541–548

    Article  CAS  Google Scholar 

  • Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y (2006) Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis 36:53–59

    Article  Google Scholar 

  • Demain AL, Spizek J (2012) The antibiotic crisis. In: Tegos G, Mylonakis E (eds) Antimicrobial drug discovery: emerging strategies. CAB International, Wallingford, UK, pp 26–43

    Chapter  Google Scholar 

  • Fox JL (2006) The business of developing antibacterials. Nat Biotechnol 24:1521–1528

    Article  CAS  Google Scholar 

  • Gross H, Stockwell VO, Henkels MD, Nowak-Thompson B, Loper JE, Gerwick WH (2007) The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem Biol 14:53–63

    Article  CAS  Google Scholar 

  • Gross H (2007) Strategies to unravel the function of orphan biosynthesis pathways: recent examples and future prospects. Appl Microbiol Biotechnol 75:267–277

    Article  CAS  Google Scholar 

  • Gross H (2009) Genomic mining—a concept for the discovery of new bioactive natural products. Curr Opin Drug Discov Devel 12:207–219

    CAS  Google Scholar 

  • Gwynn MN, Portnoy A, Rittenhouse SF, Payne DJ (2010) Challenges of antibacterial discovery revisited. Ann NY Acad Sci 1213:5–19

    Article  Google Scholar 

  • Henry C (2005) Genome mining hits pay dirt: DNA sequencing guides discovery and isolation of microbial natural product. Chem Eng News. http://pubs.acs.org/cen/news/83/i38/8338notw8.html

  • Laureti L, Song L, Huang S, Corre C, Leblond P, Challis GL, Aigle B (2011) Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens. Proc Natl Acad Sci USA 108:6258–6263

    Article  CAS  Google Scholar 

  • Lautru S, Deeth RJ, Bailey LM, Challis GL (2005) Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat Chem Biol 1:265–269

    Article  CAS  Google Scholar 

  • Lin X, Hopson R, Cane DE (2006) Genome mining in Streptomyces coelicolor: molecular cloning and characterization of a new sequiterpene synthase. J Amer Chem Soc 128:6022–6023

    Article  CAS  Google Scholar 

  • Livermore DM (2000) Antibiotic resistance in staphylococci. Int J Antimicrob Agents 16:S3–S10

    Article  CAS  Google Scholar 

  • Morris GJ Jr (2008) Germ warfare: are we creating a new generation of superbugs? Nutrition Action Health Letter: Center for Science in the Public Interest. pp. 3–6

  • Nikolouli K, Mossialos D (2012) Bioactive compounds synthesized by non-ribosomal peptide synthetases and type-I polyketide synthases discovered through genome-mining and metagenomics. Biotechnol Lett 34:1393–1403

    Article  CAS  Google Scholar 

  • Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Disc 6:29–40

    Article  CAS  Google Scholar 

  • Pollack A (2010) Rising threat of infections unfazed by antibiotics. New York Times. http://www.nytimes.com/2010/02/27/business/27germ.html?_r=0

  • Ratti E, Trist D (2001) Continuing evolution of the drug discovery process in the pharmaceutical industry. Pure Appl Chem 73:67–75

    Google Scholar 

  • Scherlach K, Hertweck C (2006) Discovery of aspoquinolones A–D, prenylated quinoline-2-one alkaloids from Aspergillus nidulans, motivated by genome mining. Org Biomol Chem 4:3517–3520

    Article  CAS  Google Scholar 

  • Sellers LJ (2003) Big pharma bails on anti-infectives research. Pharma Exec 23(12):22

    Google Scholar 

  • Song L, Barona-Gomez F, Corre C, Xiang L, Udwary DW, Austin MB, Noel JP, Moore BS, Challis GL (2006) Type III polyketide sythase β-ketoacyl-ACP starter unit and ethylmalonyl-CoA extender unit selectivity discovered by Streptomyces coelicolor genome mining. J Amer Chem Soc 128:14754–14755

    Article  CAS  Google Scholar 

  • Spellberg B, Powers JH, Brass EP, Miller LG, Edwards JE Jr (2004) Trends in antimicrobial drug development: implications for the future. Clin Infect Dis 38:1279–1286

    Article  CAS  Google Scholar 

  • Spizek J, Novotna J, Rezanka T, Demain AL (2010) Do we need new antibiotics? The search for new targets and new compounds. J Ind Microbiol Biotechnol 37:1241–1248

    Article  CAS  Google Scholar 

  • Wenzel RP (2004) The antibiotic pipeline—challenges, costs, and values. N Engl J Med 351:523–526

    Article  CAS  Google Scholar 

  • Zhang L, Kezhi Y, Zhang Y, Huang R, Bian J, Zheng C, Sun H, Chen Z, Sun N, An R, Zhao W, Zhuo Y, You J, Song Y, Yu Z, Liu Z, Yang K, Gao H, Dai H, Zhang X, Wang J, Fu C, Pei G, Liu J, Zhang S, Goodfellow M, Jiang Y, Kuai J, Zhou G, Chen X (2007) High-throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections. Proc Natl Acad Sci USA 104:4606–4611

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the assistance of the R.I.S.E. honors course, the participation of Drew faculty Kathleen Madden and Jane Liu, and the encouragement given by R.I.S.E Director Dr. Jon Kettenring and R.I.S.E Administrator Miriam Donahue. The first three authors of the paper are undergraduate students of Drew University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Demain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheffler, R.J., Colmer, S., Tynan, H. et al. Antimicrobials, drug discovery, and genome mining. Appl Microbiol Biotechnol 97, 969–978 (2013). https://doi.org/10.1007/s00253-012-4609-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4609-8

Keywords

Navigation