Skip to main content
Log in

Strategies to unravel the function of orphan biosynthesis pathways: recent examples and future prospects

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The recent increase and availability of whole genome sequences have revised our view of the metabolic capabilities of microorganisms. From these data, a large number of orphan biosynthesis pathways have been identified by bio-informatics. Orphan biosynthetic pathways are gene clusters for which the encoded natural product is unknown. It is worthy to note that the number of orphan pathways coding for putative natural products outnumbers by far the number of currently known metabolites for a given organism. Whilst Streptomyces coelicolor was known to produce only 4 secondary metabolites, the genome analysis revealed 18 additional orphan biosynthetic pathways. It is intriguing to note that this is not a particular case because analysis of other microbial genomes originating from myxobacteria, cyanobacteria and filamentous fungi showed the presence of a comparable or even larger number of orphan pathways. The discovery of these numerous pathways represents a treasure trove, which is likely to grow exponentially in the future, uncovering many novel and possibly bio-active compounds. The few natural products that have been correlated with their orphan pathway are merely the tip of the iceberg, whilst plenty of metabolites await discovery. The recent strategies and methods to access these promising hidden natural products are discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Synonym: jaspamide

  2. ELSD: evaporative light scattering detector

  3. S. coelicolor M145 is a prototrophic derivative of S. coelicolor A3(2) strain.

  4. http://www.genomesonline.org

References

  • Alarco AM, Banskota A, McAlpine J, Farnet C, Falardeau P, Zazopoulos E (2006) Poster 1922: profiling a new antitumor natural products discovered using a genomics/cheminformatics-based drug discovery platform. Presented at the American Association for Cancer Research (AACR) 97th Annual Meeting, Washington DC, April 1–5, 2006

  • Ansari MZ, Yadav G, Gokhale RS, Mohanty D (2004) NRPS–PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases. Nucleic Acids Res 32:W405–W413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Austin MB, Noel JP (2003) The chalcone synthase superfamiliy of type III polyketide synthases. Nat Prod Rep 20:79–110. DOI https://doi.org/10.1039/b100917f

    CAS  PubMed  Google Scholar 

  • Bansal AK (2005) Bioinformatics in microbial biotechnology—a mini review. Microb Cell Fact 4:19. DOI https://doi.org/10.1186/1475-2859-4-19

    PubMed  PubMed Central  Google Scholar 

  • Banskota AH, McAlpine JB, Sørensen D, Aouidate M, Piraee M, Alarco AM, Ōmura S, Shiomi K, Farnet C, Zazopoulos E (2006a) Isolation and identification of three new 5-alkenyl-3,3(2H)-furanones from two Streptomyces species using a genomic screening approach. J Antibiot 59:168–176

    CAS  Google Scholar 

  • Banskota AH, McAlpine JB, Sørensen D, Ibrahim A, Aouidate M, Piraee M, Alarco AM, Farnet C, Zazopoulos E (2006b) Genomic analyses lead to novel secondary metabolites. Part 3. ECO-0501, a novel antibacterial of a new class. J Antibiot (Tokyo) 59:533–542

    CAS  Google Scholar 

  • Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    PubMed  Google Scholar 

  • Bode HB, Müller R (2005) The impact of bacterial genomics on natural product research. Angew Chem Int Ed 44:6828–6846. DOI https://doi.org/10.1002/anie.200501080

    CAS  Google Scholar 

  • Bode HB, Müller R (2006) Analysis of myxobacterial secondary metabolism goes molecular. J Ind Microbiol Biotechnol 33:577–588

    CAS  PubMed  Google Scholar 

  • Bode HB, Bethe B, Höfs A, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. ChemBioChem 3:619–627. DOI https://doi.org/10.1002/1439-7633(20020703)3:7<619::AID-CBIC619>3.0.CO;2-9

    CAS  PubMed  Google Scholar 

  • Bok JW, Hoffmeister D, Maggio-Hall LA, Murillo R, Glasner JD, Keller NP (2006) Genomic mining for Aspergillus natural products. Chem Biol 13:31–37. DOI https://doi.org/10.1016/j.chembiol.2005.10.008

    Article  CAS  PubMed  Google Scholar 

  • Cane DE, He X, Kobayashi S, Ōmura S, Ikeda H (2006) Geosmin biosynthesis in Streptomyces avermitilis. Molecular cloning, expression, and mechanistic study of the germacradienol/geosmin synthase. J Antibiot 59:471–479

    CAS  Google Scholar 

  • Challis GL, Ravel J (2000) Coelichelin, a new peptide siderophore encoded by the Streptomyces coelicolor genome: structure prediction from the sequence of its non-ribosomal peptide synthetase. FEMS Microbiol Lett 187:111–114

    CAS  PubMed  Google Scholar 

  • Challis GL, Ravel J, Townsend CA (2000) Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthase adenylation domains. Chem Biol 7:211–224

    CAS  PubMed  Google Scholar 

  • Chong PP, Podmore SM, Kieser HM, Redenbach M, Turgay K, Marahiel M, Hopwood DA, Smith CP (1998) Physical identification of a chromosomal locus encoding biosynthetic genes for the lipopeptide calcium-dependent antibiotic (CDA) of Streptomyces coelicolor A3(2). Microbiol 144:193–199

    CAS  Google Scholar 

  • Christian OE, Compton J, Christian KR, Mooberry SL, Valeriote FA, Crews P (2005) Using jasplakinolide to turn on pathways that enable the isolation of new chaetoglobosins from Phomopsis asparagi. J Nat Prod 68:1592–1597. DOI https://doi.org/10.1021/np050293f

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christiansen G, Dittmann E, Via Ordorika L, Rippka R, Herdman M, Börner T (2001) Nonribosomal peptide synthetase genes occur in most cyanobacterial genera as evidenced by their distribution in axenic strains of the PCC. Arch Microbiol 176:452–458

    CAS  PubMed  Google Scholar 

  • Cueto M, Jensen PR, Kauffman C, Fenical W, Lobkovsky E, Clardy J (2001) Pestalone, a new antibiotic produced by a marine fungus in response to bacterial challenge. J Nat Prod 64:1444–1446. DOI https://doi.org/10.1021/np0102713

    CAS  PubMed  Google Scholar 

  • Davis NK, Chater KF (1990) Spore colour in Streptomyces coelicolor A3(2) involves the developmentally regulated synthesis of a compound biosynthetically related to polyketide antibiotics. Mol Microbiol 4:1679–1691

    CAS  PubMed  Google Scholar 

  • Diep DB, Godager L, Brede D, Nes IF (2006) Data mining and characterization of a novel pediocin-like bacteriocin system from the genome of Pediococcus pentosaceus ATCC 25745. Microbiol 152:1649–1659. DOI https://doi.org/10.1099/mic.0.28794-0

    CAS  Google Scholar 

  • Donadio S, Sosio M, Lancini G (2002) Impact of the first Streptomyces genome sequence on the discovery and production of bioactive substances. Appl Microbiol Biotechnol 60:377–380. DOI https://doi.org/10.1007/s00253-002-1143-0

    CAS  PubMed  Google Scholar 

  • Dorrestein PC, Blackhall J, Straight PD, Fischbach MA, Garneau-Tsodikova S, Edwards DJ, McLaughlin S, Lin M, Gerwick WH, Kolter R, Walsh CT, Kelleher NL (2006) Activity screening of carrier domains within nonribosomal peptide synthetases using complex substrate mixtures and large molecule mass spectrometry. Biochemistry 45:1537–1546. DOI https://doi.org/10.1021/bi052333k

    CAS  PubMed  Google Scholar 

  • Ehrenreich IM, Waterbury JB, Webb EA (2005) Distribution and diversity of natural product genes in marine and freshwater cyanobacterial cultures and genomes. Appl Environ Microbiol 71:7401–7413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fazio GC, Xu R, Matsuda SPT (2004) Genome mining to identify new plant triterpenoids. J Am Chem Soc 126:5678–5679. DOI https://doi.org/10.1021/ja0318784

    CAS  PubMed  Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, Ianakiev P, Bell-Pedersen D, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stange-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li W, Pratt RJ, Osmani SA, DeSouza CP, Glass L, Orbach MJ, Berglund JA, Voelker R, Yarden O, Plamann M, Seiler S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868. DOI https://doi.org/10.1038/nature01554

    CAS  PubMed  Google Scholar 

  • Gerth K, Pradella S, Perlova O, Beyer S, Müller R (2003) Myxobacteria: proficient producers of novel natural products with various biological activities—past and future biotechnological aspects with the focus on the genus Sorangium. J Biotechnol 106:233–253

    CAS  PubMed  Google Scholar 

  • Goldman BS, Nierman WC, Kaiser D, Slater SC, Durkin AS, Eisen J, Ronning CM, Barbazuk WB, Blanchard M, Field C, Halling C, Hinkle G, Iartchuk O, Kim HS, Mackenzie C, Madupu R, Miller N, Shvartsbeyn A, Sullivan SA, Vaudin M, Wiegand R, Kaplan HB (2006) Evolution of sensory complexity recorded in a myxobacterial genome. Proc Natl Acad Sci USA 103:15200–15205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gross H, Stockwell VO, Henkels MD, Nowak-Thompson B, Loper JE, Gerwick WH (2007) The genomisotopic approach: a systematic method to isolate the products of orphan biosynthetic gene clusters. Chem Biol 14:53–63. DOI https://doi.org/10.1016/j.chembiol.2006.11.007

    CAS  PubMed  Google Scholar 

  • Holden MTG, McGowan SJ, Bycroft BW, Stewart GSAB, Williams P, Salmond GPC (1998) Cryptic carbapenem antibiotic production genes are widespread in Erwinia carotovora: facile trans activation by the carR transcriptional regulator. Microbiol 144:1495–1508

    CAS  Google Scholar 

  • Hopwood DA (2003) The Streptomyces genome—be prepared! Nat Biotechnol 21:505–506. DOI https://doi.org/10.1038/nbt0503-505

    CAS  PubMed  Google Scholar 

  • Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Ōmura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531. DOI https://doi.org/10.1038/nbt820

    PubMed  Google Scholar 

  • Jones MG (2007) The first filamentous fungal genome sequences: Aspergillus leads the way for essential everyday resources or dusty museum specimens? Microbiol 153:1–6. DOI https://doi.org/10.1099/mic.0.2006/001479-0

    CAS  Google Scholar 

  • Kunze B, Reichenbach H, Müller R, Höfle G (2005) Aurafuron A and B, new bioactive polyketides from Stigmatella aurantiaca and Archangium gephyra (Myxobacteria). J Antibiot 58:244–251

    CAS  Google Scholar 

  • Lautru S, Deeth RJ, Bailey LM, Challis GL (2005) Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nature Chem Biol 1:265–269. DOI https://doi.org/10.1038/nchembio731

    CAS  Google Scholar 

  • Lawton EM, Cotter PD, Hill C, Ross RP (2007) Identification of a novel two-peptide lantibiotic, haloduracin, produced by the alkaliphile Bacillus halodurans C-125. FEMS Microbiol Lett 267:64–71. DOI https://doi.org/10.1111/j.1574-6968.2006.00539.x

    CAS  PubMed  Google Scholar 

  • Lin X, Hopson R, Cane DE (2006) Genome mining in Streptomyces coelicolor: molecular cloning and characterization of a new sesquiterpene synthase. J Am Chem Soc 128:6022–6023. DOI https://doi.org/10.1021/ja061292s

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch DA, Obermeyer MD, Kolesnikova MD, Xiong Q, Wilson WK, Matsuda SPT (2006) P21: cloning and characterization of an Arabidopsis oxidosqualene cyclase. Abstract Book of the American Society of Pharmacognosy 47th Annual Meeting, Arlington, Virginia, August 5–9, 2006

  • Martin R, Sterner O, Alvarez MA, De Clercq E, Bailey JE, Minas W (2001) Collinone, a new recombinant angular polyketide antibiotic made by an engineered Streptomyces strain. J Antibiot 54:239–249

    CAS  Google Scholar 

  • May JJ, Wendrich TM, Marahiel MA (2001) The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. J Biol Chem 276:7209–7217. DOI https://doi.org/10.1074/jbc.M009140200

    CAS  PubMed  Google Scholar 

  • McAlpine JB, Bachmann BO, Piraee M, Tremblay S, Alarco AM, Zazopoulos E, Farnet CM (2005) Microbial genomics as a guide to drug discovery and structural elucidation: ECO-02301, a novel antifungal agent, as an example. J Nat Prod 68:493–496. DOI https://doi.org/10.1021/np0401664

    CAS  PubMed  Google Scholar 

  • McClerren AL, Cooper LE, Quan C, Thomas PM, Kelleher NL, van der Donk WA (2006) Discovery and in vitro biosynthesis of haloduracin, a two-component lantibiotic. Proc Natl Acad Sci USA 103:17243–17248. DOI https://doi.org/10.1073/pnas.0606088103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meiser P, Bode HB, Müller R (2006) The unique DKxanthene secondary metabolite familiy from the myxobacterium Myxococcus xanthus is required for developmental sporulation. Proc Natl Acad Sci USA 103:19128–19133. DOI https://doi.org/10.1073/pnas.0606039103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Metsä-Ketelä M, Ylihonko K, Mäntsälä P (2004) Partial activation of a silent angucycline-type gene cluster from a rubromycin β producing Streptomyces sp. PGA64. J Antibiot 57:502–510

    Google Scholar 

  • Moffit MC, Neilan BA (2001) On the presence of peptide synthetase and polyketide synthase genes in the cyanobacterial genus Nodularia. FEMS Microbiol Lett 196:207–214

    Google Scholar 

  • Moore BS, Hopke JN (2001) Discovery of a new bacterial polyketide biosynthetic pathway. ChemBioChem 2:35–38

    CAS  PubMed  Google Scholar 

  • Müller R (2004) Don’t classify polyketide synthases. Chem Biol 11:4–6

    PubMed  Google Scholar 

  • Ōmura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi Y, Horikawa H, Nakazawa H, Osonoe T, Kikuchi H, Shiba T, Sakaki Y, Hattori M (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci USA 98:12215–12220. DOI https://doi.org/10.1073/pnas.211433198

    PubMed  PubMed Central  Google Scholar 

  • Park JH, Cha CJ, Roe JH (2006) Identification of genes for mycothiol biosynthesis in Streptomyces coelicolor A3(2). J Microbiol 44:121–125

    CAS  PubMed  Google Scholar 

  • Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GSA, Mavrodi DV, DeBoy RT, Seshadri R, Ren Q, Madupu R, Dodson RJ, Durkin AS, Brinkac LM, Daugherty SC, Sullivan SA, Rosovitz MJ, Gwinn ML, Zhou L, Schneider DJ, Cartinhour SW, Nelson WC, Weidman J, Watkins K, Tran K, Khouri H, Pierson EA, Pierson LS 3rd, Thomashow LS, Loper JE (2005) The complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23:873–878 (Erratum in Nat Biotechnol 24:466)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JAE, van den Berg M, Breestraat, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EGJ, Debets AJM, Dekker P, van Dijck PWM, van Dijck A, Dijkhuizen L, Driessen AJM, d’Enfert C, Geysens S, Goosen C, Groot GSP, de Groot PWJ, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JPTW, van den Hondel CAMJJ, van der Heijden RTJM, van der Kraaij RM, Klis FM, Kools HJ, Kubicek CP, van Kuyk PA, Lauber J, Lu X, van der Maarel MJEC, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver SG, Olsthoorn M, Pal K, van Peij NNME, Ram AFJ, Rinas U, Roubos JA, Sagt CMJ, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJJ, Wedler H, Wösten HAB, Zeng AP, van Ooyen AJJ, Visser J, Stam H (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25:221–231. DOI https://doi.org/10.1038/nbt1282

    PubMed  Google Scholar 

  • Pelzer S, Vente A, Bechthold A (2005) Novel natural compounds obtained by genome-based screening and genetic engineering. Curr Opin Drug Discov Devel 8:228–238

    CAS  PubMed  Google Scholar 

  • Quaderer R, Ōmura S, Ikeda H, Cane DE (2006) Pentalenolactone biosynthesis. Molecular cloning and assignment of biochemical function to PtII, a cytochrome P450 of Streptomyces avermitilis. J Am Chem Soc 128:13036–13037. DOI https://doi.org/10.1021/ja0639214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramaswamy AV, Flatt PM, Edwards DJ, Simmons TL, Han B, Gerwick WH (2006) The secondary metabolites and biosynthetic gene clusters of marine cyanobacteria. Applications in biotechnology. In: Proksch P, Müller WEG (eds) Frontiers in marine biotechnology. Horizon Bioscience, Norwich, pp 175–224

    Google Scholar 

  • Scherlach K, Hertweck C (2006) Discovery of aspoquinolones A–D, prenylated quinoline-2-one alkaloids from Aspergillus nidulans, motivated by genome mining. Org Biomol Chem 4:3517–3520. DOI https://doi.org/10.1039/b607011f

    CAS  PubMed  Google Scholar 

  • Schloss PD, Handelsman J (2005) Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biol 6:229

    PubMed  PubMed Central  Google Scholar 

  • Schmidt EW, Nelson JT, Rasko DA, Sudek S, Eisen JA, Haygood MG, Ravel J (2005) Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc Natl Acad Sci USA 102:7315–7320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen B (2003) Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr Opin Chem Biol 7:285–295

    CAS  PubMed  Google Scholar 

  • Sielaff H, Christiansen G, Schwecke T (2006) Natural products from cyanobacteria: exploiting a new source for drug discovery. IDrugs 9:119–127

    CAS  PubMed  Google Scholar 

  • Silakowski B, Kunze B, Nordsiek G, Blöcker H, Höfle G, Müller R (2000) The myxochelin iron transport regulon of the myxobacterium Stigmatella aurantiaca Sg a15. Eur J Biochem 267:6476–6485

    CAS  PubMed  Google Scholar 

  • Silakowski B, Kunze B, Müller R (2001) Multiple hybrid polyketide synthase/non-ribosomal peptide synthetase gene clusters in the myxobacterium Stigmatella aurantiaca. Gene 275:233–240

    CAS  PubMed  Google Scholar 

  • Song L, Barona-Gomez F, Corre C, Xiang L, Udwary DW, Austin MB, Noel JP, Moore BS, Challis GL (2006) Type III polyketide synthase β-ketoacyl-ACP starter unit and ethylmalonyl-CoA extender unit selectivity discovered by Streptomyces coelicolor genome mining. J Am Chem Soc 128:14754–14755. DOI https://doi.org/10.1021/ja065247w

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stachelhaus T, Marahiel MA (1995) Modular structure of peptide synthetases revealed by dissection of the multifunctional enzyme GrsA. J Biol Chem 270:6163–6169

    CAS  PubMed  Google Scholar 

  • Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505

    CAS  PubMed  Google Scholar 

  • Sudek S, Haygood MG, Youssef DTA, Schmidt EW (2006) Structure of trichamide, a cyclic peptide from the bloom-forming cyanobacterium Trichodesmium erythraeum, predicted from the genome sequence. Appl Environ Microbiol 72:4382–4387. DOI https://doi.org/10.1128/AEM.00380-06

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takano E, Kinoshita H, Mersinias V, Bucca G, Hotchkiss G, Nihira T, Smith CP, Bibb M, Wohlleben W, Chater K (2005) A bacterial hormone (the SCB1) directly controls the expression of a pathway-specific regulatory gene in the cryptic type I polyketide biosynthetic gene cluster of Streptomyces coelicolor. Mol Microbiol 56:465–479. DOI https://doi.org/10.1111/j.1365-2958.2005.04543.x

    CAS  PubMed  Google Scholar 

  • Thompson CJ, Fink D, Nguyen LD (2002) Principles of microbial alchemy: insights from the Streptomyces coelicolor genome sequence. Genome Biol 3:1020.1–1020.4 (Reviews)

    Google Scholar 

  • Tobiasen C, Aahman J, Ravnholt KS, Bjerrum MJ, Grell MN, Giese H (2007) Nonribosomal peptide synthetase (NPS) genes in Fusarium graminearum, F. culmorum and F. pseudograminearium and identification of NPS2 as the producer of ferricrocin. Curr Genet 51:43–58. DOI https://doi.org/10.1007/s00294-006-0103-0

    CAS  PubMed  Google Scholar 

  • Van Lanen SG, Shen B (2006) Microbial genomics for the improvement of natural product discovery. Curr Opin Microbiol 9:252–260. DOI https://doi.org/10.1016/j.mib.2006.04.002

    PubMed  Google Scholar 

  • Weber T, Welzel K, Pelzer S, Vente A, Wohlleben W (2003) Exploiting the genetic potential of polyketide producing streptomycetes. J Biotechnol 106:221–232. DOI https://doi.org/10.1016/j.jbiotec.2003.08.004

    CAS  PubMed  Google Scholar 

  • Wenzel SC, Müller R (2005a) Formation of novel secondary metabolites by bacterial multimodular assembly lines: deviations from textbook biosynthetic logic. Curr Opin Chem Biol 9:447–458. DOI https://doi.org/10.1016/j.cbpa.2005.08.001

    CAS  PubMed  Google Scholar 

  • Wenzel SC, Müller R (2005b) Recent developments towards the heterologous expression of complex bacterial natural product biosynthetic pathways. Curr Opin Biotechnol 16:594–606. DOI https://doi.org/10.1016/j.copbio.2005.10.001

    CAS  PubMed  Google Scholar 

  • Wenzel SC, Kunze B, Höfle G, Silakowski B, Scharfe M, Blöcker H, Müller R (2005a) Structure and biosynthesis of myxochromides S1–3 in Stigmatella aurantiaca: evidence for an iterative bacterial type I polyketide synthase and for module skipping in nonribosomal peptide biosynthesis. ChemBioChem 6:375–385. DOI 1002/cbic.200400282

    CAS  PubMed  Google Scholar 

  • Wenzel SC, Gross F, Zhang Y, Fu J, Stewart AF, Müller R (2005b) Heterologous expression of a myxobacterial natural products assembly line in pseudomonads via red/ET recombineering. Chem Biol 12:349–356. DOI https://doi.org/10.1016/j.chembiol.2004.12.012

    CAS  PubMed  Google Scholar 

  • Xiong Q, Wilson WK, Matsuda SPT (2006) P-026: an Arabidopsis oxidosqualene cyclase generates numerous products by diverse mechanism. Abstract Book of the American Society of Pharmacognosy 47th Annual Meeting, Arlington, Virginia, August 5–9, 2006

  • Yadav G, Gokhale RS, Mohanty D (2003) Computational approach for prediction of domain organization and substrate specificity of modular polyketide synthases. J Mol Biol 328:335–363. DOI https://doi.org/10.1016/S0022-2836(03)00232-8

    CAS  PubMed  Google Scholar 

  • Zazopoulos E, Huang K, Staffa A, Liu W, Bachmann BO, Nonaka K, Ahlert J, Thorson JS, Shen B, Farnet CM (2003) A genomics-guided approach for discovering and expressing cryptic metabolic pathways. Nat Biotechnol 21:187–190. DOI https://doi.org/10.1038/nbt784

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Gross.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, H. Strategies to unravel the function of orphan biosynthesis pathways: recent examples and future prospects. Appl Microbiol Biotechnol 75, 267–277 (2007). https://doi.org/10.1007/s00253-007-0900-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0900-5

Keywords

Navigation