Skip to main content
Log in

Risk Factors for Cardiac Adverse Events in Infants and Children with Complex Heart Disease Scheduled for Bi-ventricular Repair: Prognostic Value of Pre-operative B-Type Natriuretic Peptide and High-Sensitivity Troponin T

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Few reports have described the prognostic value of measuring both B-type natriuretic peptides (BNP) and high-sensitivity troponin T (hs-TnT) in pediatric patients with complex congenital heart disease (CHD) undergoing surgery. We assessed demographic, hemodynamic, and laboratory data, including BNP and hs-TnT levels, for the prediction of cardiac adverse events in 85 patients. Cardiac adverse events were defined as death, cardiac arrest, worsening heart failure requiring inotropic agents and/or respiratory support, and unscheduled surgery/intervention either within or after 12 months of surgery. There were 17 cardiac adverse events. Of the demographic variables, low birth weight (< 2500 g: Odds ratio [OR], 5.97; 95% confidential interval [CI] 1.48–24.0; p = 0.001) and Ross/New York Heart Association [NYHA] class (≥ 2.0) (OR 12.7; 95% CI 3.08–52.7; p = 0.0004) were strongly association with cardiac adverse events. Among hemodynamic and laboratory variables, preoperative BNP (OR 14.04; 95% CI 2.15–91.7; p = 0.001) and hs-TnT levels (OR 16.66; 95% CI 2.27–122; p = 0.002) were found to be independent risk factors. Receiver operating characteristic analysis determined BNP and hs-TnT levels of 60.9 pg/mL and 0.025 ng/mL, respectively, to be markers of high risk. Kaplan–Meier analysis demonstrated significant differences in the freedom from cardiac adverse events between Group A (BNP or hs-TnT elevated, n = 26) and Group B (both biomarkers elevated, n = 19; log-rank, p < 0.001). In conclusion, low birth weight (< 2500 g) and Ross/NYHA class ≥ 2.0 are strongly associated with cardiac adverse events. Preoperative BNP and hs-TnT also provide prognostic information in patients with complex CHD scheduled for surgery. Using both markers in combination predicts cardiac adverse events better than using either separately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jenkins KJ, Gauvreau K, Newburger JW, Sprey TL, Moller JH, Iezzoni LL (2002) Consensus-based method for risk adjustment for surgery for congenital heart disease. J Thorac Cardiovasc Surg 123:110–118. https://doi.org/10.1067/mtc.2002.119064

    Article  PubMed  Google Scholar 

  2. Chang RKR, Chen AY, Klitzner TS (2002) Female sex as a risk factor for in-hospital mortality among children undergoing cardiac surgery. Circulation 106:1514–1522. https://doi.org/10.1161/01.cir.0000029104.94858.6f

    Article  PubMed  Google Scholar 

  3. Kang N, Cole N, Tsang V, Elliot M, de Leval M (2004) Risk stratification in pediatric open-heart surgery. Eur J Cardio-thorac Surg 26:3–11. https://doi.org/10.1016/j.ejcts.2004.03.038

    Article  Google Scholar 

  4. Chang RKR, Rodriquez S, Lee M, Kitzner TS (2006) Risk factors for death occurring within 30 days and 1 year after hospital discharge for cardiac surgery among pediatric patients. Am Heart J 152:386–393. https://doi.org/10.1016/j.ahj.2005.12.016

    Article  PubMed  Google Scholar 

  5. Kogon B, Jain A, Oster M, Woodal K, Kanter K, Kirshborn P (2012) Risk factors associated with readmission after pediatric cardiothoracic surgery. Ann Thorac Surg 94:865–873. https://doi.org/10.1016/j.athoracsur.2012.04.025

    Article  PubMed  Google Scholar 

  6. Tregay J, Wray J, Bull C, Franklin RC, Daubeney P, Barron DJ, Brown K, Knowles RL (2015) Unexpected death and unplanned re-admission in infants discharged home after cardiac surgery: a systematic review of potential risk factors. Cardiol Young 25:839–852. https://doi.org/10.1017/S1047951114002492

    Article  PubMed  Google Scholar 

  7. Lurati Buse GA, Koller MT, Burkhart C, Seeberger MD, Filipovic M (2011) The predictive value of preoperative natriuretic peptide concentration in adults undergoing surgery: a systematic review and meta-analysis. Anesth Analog 112:1019–1033. https://doi.org/10.1213/ANE.0b013e31820f286f

    Article  CAS  Google Scholar 

  8. Lurati Buse GA, Bolliger D, Seeberger E, Kapsper J, Grapow M, Koller MT, Seeberger MD, Filipovic M (2014) Troponin T and B-type natriuretic peptide after on-pump cardiac surgery: prognostic impact on 12-month mortality and major cardiac events after adjustment for postoperative complications. Circulation 130:948–957. https://doi.org/10.1161/CIRCULATIONAHA.113.007253

    Article  CAS  PubMed  Google Scholar 

  9. Braunwald E (2008) Biomarkers in heart failure. N Engl J Med 358:2148–2159. https://doi.org/10.1056/NEJMra0800239

    Article  CAS  PubMed  Google Scholar 

  10. Shih CY, Sapru A, Oishi P, Azakie A, Karl TR, Hamon C, Asija R, Adatia I, Fineman JR (2006) Alterations in plasma B-type natriuretic peptide levels after repair of congenital heart defects: a potential perioperative marker. J Thorac Cardiovasc Surg 131:632–638. https://doi.org/10.1016/j.jtcvs.2005.10.052

    Article  CAS  PubMed  Google Scholar 

  11. Immer FF, Stocker F, Seiler AM, Pfammatter JP, Bachmann D, Printzen G, Carrel T (1999) Troponin I for prediction of early postoperative course after pediatric surgery. J Am Coll Cardiol 33:1719–1723. https://doi.org/10.1016/s0735-1097(99)00061-3

    Article  CAS  PubMed  Google Scholar 

  12. Carmona F, Manso PH, Vicente WVA, Carstro M, Carlotti APCP (2008) Risk stratification in neonate and infants submitted to cardiac surgery with cardiopulmonary bypass: a multimarker approach combining inflammatory mediators, N-terminal pro-B-type natriuretic peptide and troponin I. Cytokine 42:317–324. https://doi.org/10.1016/j.cyto.2008.03.005

    Article  CAS  PubMed  Google Scholar 

  13. Bojan M, Peperstraete H, Lilot M, Vicca S, Pouard P, Vouhe P (2012) Early elevation of cardiac troponin I is predictive of short-term outcome in neonates and infants with coronary anomalies or reduced ventricular mass undergoing cardiac surgery. J Thorac Cardiovasc Surg 144:1436–1444. https://doi.org/10.1016/j.jtcvs.2012.05.034

    Article  CAS  PubMed  Google Scholar 

  14. Walsh R, Boyer C, LaCorte J, Parnell V, Sison C, Chowdhury D, Ojamaa K (2008) N-terminal B-type natriuretic peptide levels in pediatric patients with congenital heart failure undergoing cardiac surgery. J Thorac Cardiovasc Surg 135:98–105. https://doi.org/10.1016/j.jtcvs.2007.08.012

    Article  CAS  PubMed  Google Scholar 

  15. Cantinotti M, Giordano R, Scalese M, Molinaro S, Della Pina F, Storti S, Arceri L, Murzi L, Marotta M, Park V, Poli V, Iervasi G, Clerico A (2015) Prognostic role of BNP in children undergoing surgery for congenital heart disease: analysis of prediction models incorporating standard risk factors. Clin Chem Lab Med 53:1839–1846. https://doi.org/10.1515/cclm-2014-1084

    Article  CAS  PubMed  Google Scholar 

  16. Perez-Piaya MR, Abarca E, Soler V, Coca A, Crutz M, Villagara F, Giannivelli S, Ascensio A (2011) Levels of N-terminal pro-natriuretic peptide in congenital heart disease surgery and its value as a predictive biomarker. Int Cardiovasc Thoracic Surg 12:461–466. https://doi.org/10.1510/icvts.2010.245803

    Article  Google Scholar 

  17. Qu J, Liang H, Zhou N, Li L, Wang Y, Li J, Cui Y (2017) Perioperative NT-pro BNP level: potential prognostic markers in children undergoing congenital surgery. J Thorac Cardiovasc Surg 154:631–640. https://doi.org/10.1016/j.jtcvs.2016.12.056

    Article  CAS  PubMed  Google Scholar 

  18. Kanazawa T, Egi M, Toda Y, Shimizu K, Sugimoto K, Iwasaki T, Morimatsu H (2017) Perioperative brain natriuretic peptide in pediatric cardiac surgery patients: its association with postoperative outcome. J Cardiothorac Vasc Anesth 31:537–542. https://doi.org/10.1053/j.jvca.2016.09.008

    Article  CAS  PubMed  Google Scholar 

  19. Baggen VJM, van den Bosch AE, Eindhoven JA, Schut ARW, Cuypers JAAE, Witsenburg M, van Schaik MWRHN, Boersma EB, Roos-Hesselink JW (2017) Prognostic value of N-terminal pro-B-type natriuretic peptide, troponin T, and growth-differentiation factor 15 on adult congenital heart disease. Circulation 135:264–279. https://doi.org/10.1161/CIRCULATIONAHA.116.023255

    Article  CAS  PubMed  Google Scholar 

  20. Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA, Del Nido P, Fasules JW, Graham TP Jr, Hijazi ZM, Hunt SA, King ME, Landzberg MJ, Miner PD, Radford MJ, Walsh EP, Webb GD (2008) ACC/AHA 2008 guideline for the management of adults with congenital heart disease: Executive summary. Circulation 118:2395–2451. https://doi.org/10.1161/CIRCULATIONAHA.108.190811

    Article  PubMed  Google Scholar 

  21. Ohuchi H, Takasugi H, Ohashi H, Yamada O, Watanabe K, Yagihara T, Echigo S (2004) Abnormalies of neurohormonal and cardiac autonomic nervous activities relate poorly to functional status in fontan patients. Circulation 110:2601–2608. https://doi.org/10.1161/01.CIR.0000145545.83564.51

    Article  PubMed  Google Scholar 

  22. Shah A, Feraco AM, Harmon C, Tacy T, Fineman JR, Baerson HS (2009) Useful of various plasma biomarkers for diagnosis of heart failure in children with single ventricle physiology. Am J Cardiol 104:1280–1284. https://doi.org/10.1016/j.amjcard.2006.02.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nagy ZL, Collins M, Sharpe T, Mirsadraee S, Guerrero RR, Gibbs J, Watterson KG (2003) Effect of two different bypass technique on serum troponin-T levels in newborn and children. Circulation 108:577–582. https://doi.org/10.1161/01.CIR.0000081779.88132.74

    Article  CAS  PubMed  Google Scholar 

  24. Law YM, Hoyer AW, Reller MD, Silberbach M (2009) Accuracy of plasma B-type natriuretic peptide to diagnosis significant cardiovascular diseases in children: the Better Not Pout Children! study. J Am Coll Cardiol 54:467–475. https://doi.org/10.1016/j.jacc.2009.06.020

    Article  CAS  Google Scholar 

  25. Nakazawa M, Marks RA, Isabel-Jones J, Jarmakani JM (1976) Right and left volume characteristics in children with pulmonary stenosis and intact ventricular septum. Circulation 53:884–890. https://doi.org/10.1161/01.cir.53.5.884

    Article  CAS  PubMed  Google Scholar 

  26. Ross RD, Bollinger RO, Pinsky WW (1992) Grading the severity of congestive heart failure in infants. Pediatr Cardiol 13:72–75. https://doi.org/10.1007/BF00798207

    Article  CAS  PubMed  Google Scholar 

  27. Harris BU, Char DS, Feinstein JA, Verma A, Shiboski SC, Ramamoorthy C (2016) Accuracy of pulse oximeters intended for hypoxic pediatric patients. Pediatr Crit Care Med 17:315–320. https://doi.org/10.1097/PCC.0000000000000660

    Article  PubMed  Google Scholar 

  28. Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48:452–458. https://doi.org/10.1038/bmt.2012.244

    Article  CAS  Google Scholar 

  29. Ades AM, Dominguez TE, Nicolson SC, Gaynor JW, Spray TL, Wernovsky G, Tabbutt S (2010) Morbidity and mortality after surgery for congenital cardiac disease in the infants born with low weight. Cardiol Young 20:8–17. https://doi.org/10.1017/S1047951109991909

    Article  PubMed  Google Scholar 

  30. Alsoufi B, Manlhiot C, Mahle WT, Deshpande S, Kogon B, McCrindle BW, Kanter K (2014) Low-weight infants are at increased risk mortality after palliative or corrective surgery. J Thorac Cardiovasc Surg 148:2508–2514. https://doi.org/10.1016/j.jtcvs.2014.07.047

    Article  PubMed  Google Scholar 

  31. Best KE, Tennat PWG, Rankin J (2017) Survival, by birth weight and gestational age, in individual with congenital heart disease: a population-based study. J Am Heart Assoc 6:e005213. https://doi.org/10.1161/JAHA.116.005213

    Article  PubMed  PubMed Central  Google Scholar 

  32. Provenchere S, Berroeta C, Reynaud C, Baron G, Poirier I, Desmonts JM, Lung B, Dehoux M, Philip I, Benessiano J, (2006) Plasma brain natriuretic peptide and cardiac troponin I concentrations after adult cardiac surgery: association with postoperative cardiac dysfunction and 1-year mortality. Crit Care Med 34:995–1000. https://doi.org/10.1097/01.CCM.000020610.94385.C4

    Article  CAS  PubMed  Google Scholar 

  33. Yong YR, Sheu BF, Li WC, Hsieh TM, Hung CW, Chang SS, Lee CC (2014) Predictive value of plasma brain natriuretic peptide for postoperative cardiac complications: a systemic review and meta-analysis. J Crit Care 29:695e1–695e10. https://doi.org/10.1016/j.jcrc.2014.03.022

    Article  CAS  Google Scholar 

  34. Afshani N, Schulein S, Biccard B, Thomas JM (2015) Clinical utility of B-type natriuretic peptide in pediatric cardiac surgery: a systemic review. Paediatric Anaesth 25:115–126. https://doi.org/10.1111/pan.12467

    Article  Google Scholar 

  35. Immer FF, Stocker FP, Seiler AM, Pfammatter JP, Printzen G, Carrel TP (1988) Comparison of troponin I and troponin T after pediatric cardiovascular operation. Ann Thorac Surg 66:2073–2077. https://doi.org/10.1016/s0003-4975(98)00795-4

    Article  Google Scholar 

  36. Lipshultz SE, Rifai N, Sallan SE, Lipstiz SR, Dalton V, Sacks DB, Ottinger ME (1997) Predictive value of troponin T in pediatric patients at risk for myocardial injury. Circulation 96:2641–2648. https://doi.org/10.1161/01.cir.96.8.2641

    Article  CAS  PubMed  Google Scholar 

  37. Mildh LH, Pettila V, Sairanen HI, Rautiainen PH (2006) Cardiac troponin T levels for risk stratification in pediatric open-heart surgery. Ann Thorac Surg 82:1643–1649. https://doi.org/10.1016/j.athoracsur.2006.05.014

    Article  PubMed  Google Scholar 

  38. Sugimoto M, Ota K, Kajihama A, Nakau K, Manabe H, Kajino H (2011) Volume overload and pressure overload due to left-to right shunt induced myocardial injury. Evaluation using a highly sensitive cardiac Troponin-I assay in children with congenital heart disease. Cir J 75:2213–2219. https://doi.org/10.1253/circj.cj-10-1211

    Article  CAS  Google Scholar 

  39. Kayali S, Ertugruli L, Yoldas T, Kaya O, Ozgur S, Orun UA, Karademir S (2018) Sensitive cardiac troponins: could they be new biomarkers in pediatric pulmonary hypertension due to congenital heart disease? Ped Cardiol 39:718–725. https://doi.org/10.1007/s00246-018-1811-1

    Article  Google Scholar 

  40. Dyer AK, Bares AP, Fixler DE, Shah TK, Sutclife DL, Hashim I, Drazner MH, de Lemos JA (2012) Use of a highly sensitive assay for cardiac troponin T and N-terminal pro-brain natriuretic peptide of diagnose acute rejection in pediatric cardiac transplant recipients. Am Heart J 163:595–600. https://doi.org/10.1016/j.ahj.2012.02.003

    Article  CAS  PubMed  Google Scholar 

  41. Apple FS, Wu AH, Jaffe AS (2002) European society of cardiology and American college of cardiology guideline for redefinition of myocardial infarction: how to use existing assay clinically and for clinical trial. Am Heart J 144:981–986. https://doi.org/10.1067/mhj.2002.124048

    Article  PubMed  Google Scholar 

  42. Pascual-Figal DA, Manzano-Fernandez S, Boronat M, Casa T, Garrido IP, Bonaque JC, Pastor-Perez F, Valdes M, Januzzi JL (2011) Soluble ST2, high-sensitivity troponin T-and N-terminal pro-B-type natriuretic peptide: complementary role for risk stratification in acutely decompensate heart failure. Eur J Heart Fail 13:718–725

    Article  CAS  Google Scholar 

  43. deFilippi CR, Seliger S (2017) A multibiomarker approach to heart failure prognostication: a work in progress. JACC Heart Fail 5:265–267. https://doi.org/10.1093/eurjhf/hfr047

    Article  CAS  PubMed  Google Scholar 

  44. Austin PC, Allignol A, Fine JP (2017) The number of primary events per variable affects estimation of the subdistribution hazard competing risk model. J Clin Epidemiol 83:75–84. https://doi.org/10.1016/j.jclinepi.2016.11.017

    Article  PubMed  Google Scholar 

  45. Miyamoto K, Takeuchi D, Inai K, Shinohara T, Nakanishi T (2016) Prognostic value of multiple biomarkers for cardiovascular mortality in adult congenital heart disease: comparisons of single-/two-ventricular physiology, and systemic morphologically right/left ventricle. Heart Vessels 31:1834–1847. https://doi.org/10.1007/s00380-016-0807-0

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing.

Funding

The study received no grant from any funding agency in the public, commercial, or not-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection and analysis were performed by YM MD and YN MD. The draft of manuscript was written by YM MD. Material preparation and data collection were performed by NI MD, SK MD, and T MD. All authors read and approved the paper.

Corresponding author

Correspondence to Yoshiki Mori.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethics Approval

This cohort study was approved by the ethics committee of Seirei Hamamatsu General Hospital.

Informed consent

Parental informed consent was obtained from all patients included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mori, Y., Nakashima, Y., Kaneko, S. et al. Risk Factors for Cardiac Adverse Events in Infants and Children with Complex Heart Disease Scheduled for Bi-ventricular Repair: Prognostic Value of Pre-operative B-Type Natriuretic Peptide and High-Sensitivity Troponin T. Pediatr Cardiol 41, 1756–1765 (2020). https://doi.org/10.1007/s00246-020-02437-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-020-02437-5

Keywords

Navigation