Skip to main content
Log in

Down-Regulation of the Epithelial Na+ Channel ENaC by Janus kinase 2

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Janus kinase-2 (JAK2), a signaling molecule mediating effects of various hormones including leptin and growth hormone, has previously been shown to modify the activity of several channels and carriers. Leptin is known to inhibit and growth hormone to stimulate epithelial Na+ transport, effects at least partially involving regulation of the epithelial Na+ channel ENaC. However, no published evidence is available regarding an influence of JAK2 on the activity of the epithelial Na+ channel ENaC. In order to test whether JAK2 participates in the regulation of ENaC, cRNA encoding ENaC was injected into Xenopus oocytes with or without additional injection of cRNA encoding wild type JAK2, gain-of-function V617FJAK2 or inactive K882EJAK2. Moreover, ENaC was expressed with or without the ENaC regulating ubiquitin ligase Nedd4-2 with or without JAK2, V617FJAK2 or K882EJAK2. ENaC was determined from amiloride (50 μM)-sensitive current (I amil) in dual electrode voltage clamp. Moreover, I amil was determined in colonic tissue utilizing Ussing chambers. As a result, the I amil in ENaC-expressing oocytes was significantly decreased following coexpression of JAK2 or V617FJAK2, but not by coexpression of K882EJAK2. Coexpression of JAK2 and Nedd4-2 decreased I amil in ENaC-expressing oocytes to a larger extent than coexpression of Nedd4-2 alone. Exposure of ENaC- and JAK2-expressing oocytes to JAK2 inhibitor AG490 (40 μM) significantly increased I amil. In colonic epithelium, I amil was significantly enhanced by AG490 pretreatment (40 μM, 1 h). In conclusion, JAK2 is a powerful inhibitor of ENaC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alesutan I, Sopjani M, Dermaku-Sopjani M, Munoz C, Voelkl J, Lang F (2012) Upregulation of Na-coupled glucose transporter SGLT1 by Tau tubulin kinase 2. Cell Physiol Biochem 30(2):458–465

    Article  CAS  PubMed  Google Scholar 

  • Almilaji A, Munoz C, Hosseinzadeh Z, Lang F (2013a) Upregulation of Na+, Cl(−)-coupled betaine/gamma-amino-butyric acid transporter BGT1 by Tau tubulin kinase 2. Cell Physiol Biochem 32(2):334–343. doi:10.1159/000354441

    Article  CAS  PubMed  Google Scholar 

  • Almilaji A, Szteyn K, Fein E, Pakladok T, Munoz C, Elvira B, Towhid ST, Alesutan I, Shumilina E, Bock CT, Kandolf R, Lang F (2013b) Down-regulation of Na/K+ atpase activity by human parvovirus B19 capsid protein VP1. Cell Physiol Biochem 31(4–5):638–648. doi:10.1159/000350083

    Article  CAS  PubMed  Google Scholar 

  • Baskin R, Majumder A, Sayeski PP (2010) The recent medicinal chemistry development of Jak2 tyrosine kinase small molecule inhibitors. Curr Med Chem 17(36):4551–4558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beltowski J, Wojcicka G, Jamroz-Wisniewska A, Wojtak A (2010) Chronic hyperleptinemia induces resistance to acute natriuretic and NO-mimetic effects of leptin. Peptides 31(1):155–163. doi:10.1016/j.peptides.2009.10.012

    Article  CAS  PubMed  Google Scholar 

  • Bhavsar SK, Hosseinzadeh Z, Merches K, Gu S, Broer S, Lang F (2011) Stimulation of the amino acid transporter SLC6A19 by JAK2. Biochem Biophys Res Commun 414(3):456–461

    Article  CAS  PubMed  Google Scholar 

  • Bhavsar SK, Hosseinzadeh Z, Brenner D, Honisch S, Jilani K, Liu G, Szteyn K, Sopjani M, Mak TW, Shumilina E, Lang F (2013) Energy sensitive regulation of Na+/K+ ATPase by Janus kinase 2. Am J Physiol Cell Physiol. doi:10.1152/ajpcell.00320.2013

    PubMed  Google Scholar 

  • Bohmer C, Wagner CA, Beck S, Moschen I, Melzig J, Werner A, Lin JT, Lang F, Wehner F (2000) The shrinkage-activated Na(+) conductance of rat hepatocytes and its possible correlation to rENaC. Cell Physiol Biochem 10(4):187–194

    Article  CAS  PubMed  Google Scholar 

  • Brooks AJ, Waters MJ (2010) The growth hormone receptor: mechanism of activation and clinical implications. Nat Rev Endocrinol 6(9):515–525

    Article  CAS  PubMed  Google Scholar 

  • Coatmellec-Taglioni G, Ribiere C (2003) Factors that influence the risk of hypertension in obese individuals. Curr Opin Nephrol Hypertens 12(3):305–308. doi:10.1097/01.mnh.0000069863.94246.1e

    Article  CAS  PubMed  Google Scholar 

  • Coaxum SD, Garnovskaya MN, Gooz M, Baldys A, Raymond JR (2009) Epidermal growth factor activates Na(+/)H(+) exchanger in podocytes through a mechanism that involves Janus kinase and calmodulin. Biochim Biophys Acta 1793(7):1174–1181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deachapunya C, Poonyachoti S, Krishnamra N (2012) Site-specific regulation of ion transport by prolactin in rat colon epithelium. Am J Physiol Gastrointest Liver Physiol 302(10):G1199–G1206. doi:10.1152/ajpgi.00143.2011

    Article  CAS  PubMed  Google Scholar 

  • Dorkkam N, Wongdee K, Suntornsaratoon P, Krishnamra N, Charoenphandhu N (2013) Prolactin stimulates the L-type calcium channel-mediated transepithelial calcium transport in the duodenum of male rats. Biochem Biophys Res Commun 430(2):711–716. doi:10.1016/j.bbrc.2012.11.085

    Article  CAS  PubMed  Google Scholar 

  • Friedrich B, Feng Y, Cohen P, Risler T, Vandewalle A, Broer S, Wang J, Pearce D, Lang F (2003) The serine/threonine kinases SGK2 and SGK3 are potent stimulators of the epithelial Na+ channel alpha, beta, gamma-ENaC. Pflugers Arch 445(6):693–696. doi:10.1007/s00424-002-0993-8

    CAS  PubMed  Google Scholar 

  • Garnovskaya MN, Mukhin YV, Vlasova TM, Raymond JR (2003) Hypertonicity activates Na+/H+ exchange through Janus kinase 2 and calmodulin. J Biol Chem 278(19):16908–16915

    Article  CAS  PubMed  Google Scholar 

  • Gatsios P, Terstegen L, Schliess F, Haussinger D, Kerr IM, Heinrich PC, Graeve L (1998) Activation of the Janus kinase/signal transducer and activator of transcription pathway by osmotic shock. J Biol Chem 273(36):22962–22968

    Article  CAS  PubMed  Google Scholar 

  • Gong TW, Meyer DJ, Liao J, Hodge CL, Campbell GS, Wang X, Billestrup N, Carter-Su C, Schwartz J (1998) Regulation of glucose transport and c-fos and egr-1 expression in cells with mutated or endogenous growth hormone receptors. Endocrinology 139(4):1863–1871

    CAS  PubMed  Google Scholar 

  • Han SH, Kim JH, Seo HS, Martin MH, Chung GH, Michalek SM, Nahm MH (2006) Lipoteichoic acid-induced nitric oxide production depends on the activation of platelet-activating factor receptor and Jak2. J Immunol 176(1):573–579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Helms MN, Yu L, Malik B, Kleinhenz DJ, Hart CM, Eaton DC (2005) Role of SGK1 in nitric oxide inhibition of ENaC in Na+-transporting epithelia. Am J Physiol Cell Physiol 289(3):C717–C726. doi:10.1152/ajpcell.0 0006.2005

    Article  CAS  PubMed  Google Scholar 

  • Henrion U, Zumhagen S, Steinke K, Strutz-Seebohm N, Stallmeyer B, Lang F, Schulze-Bahr E, Seebohm G (2012) Overlapping cardiac phenotype associated with a familial mutation in the voltage sensor of the KCNQ1 channel. Cell Physiol Biochem 29(5–6):809–818

    Article  CAS  PubMed  Google Scholar 

  • Ho K, Valdez F, Garcia R, Tirado CA (2010) JAK2 Translocations in hematological malignancies: review of the literature. J Assoc Genet Technol 36(3):107–109

    PubMed  Google Scholar 

  • Hosseinzadeh Z, Bhavsar SK, Shojaiefard M, Saxena A, Merches K, Sopjani M, Alesutan I, Lang F (2011a) Stimulation of the glucose carrier SGLT1 by JAK2. Biochem Biophys Res Commun 408(2):208–213

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh Z, Bhavsar SK, Sopjani M, Alesutan I, Saxena A, Dermaku-Sopjani M, Lang F (2011b) Regulation of the glutamate transporters by JAK2. Cell Physiol Biochem 28(4):693–702

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh Z, Bhavsar SK, Lang F (2012a) Downregulation of ClC-2 by JAK2. Cell Physiol Biochem 29(5–6):737–742

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh Z, Shojaiefard M, Bhavsar SK, Lang F (2012b) Up-regulation of the betaine/GABA transporter BGT1 by JAK2. Biochem Biophys Res Commun 420(1):172–177

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh Z, Sopjani M, Pakladok T, Bhavsar SK, Lang F (2013) Downregulation of KCNQ4 by Janus kinase 2. J Membr Biol 246(4):335–341. doi:10.1007/s00232-013-9537-8

    Article  CAS  PubMed  Google Scholar 

  • Kamenicky P, Viengchareun S, Blanchard A, Meduri G, Zizzari P, Imbert-Teboul M, Doucet A, Chanson P, Lombes M (2008) Epithelial sodium channel is a key mediator of growth hormone-induced sodium retention in acromegaly. Endocrinology 149(7):3294–3305. doi:10.1210/en.2008-0143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kamynina E, Staub O (2002) Concerted action of ENaC, Nedd4-2, and Sgk1 in transepithelial Na(+) transport. Am J Physiol Renal Physiol 283(3):F377–F387. doi:10.1152/ajprenal.00143.2002

    Article  CAS  PubMed  Google Scholar 

  • Kunzelmann K, Mall M (2002) Electrolyte transport in the mammalian colon: mechanisms and implications for disease. Physiol Rev 82(1):245–289. doi:10.1152/physrev.00026.2001

    Article  CAS  PubMed  Google Scholar 

  • Kurdi M, Booz GW (2009) JAK redux: a second look at the regulation and role of JAKs in the heart. Am J Physiol Heart Circ Physiol 297(5):H1545–H1556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lang F, Bohmer C, Palmada M, Seebohm G, Strutz-Seebohm N, Vallon V (2006) (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol Rev 86(4):1151–1178. doi:10.1152/physrev.00050.2005

    Article  CAS  PubMed  Google Scholar 

  • Lopez AF, Hercus TR, Ekert P, Littler DR, Guthridge M, Thomas D, Ramshaw HS, Stomski F, Perugini M, D’Andrea R, Grimbaldeston M, Parker MW (2010) Molecular basis of cytokine receptor activation. IUBMB Life 62(7):509–518

    Article  CAS  PubMed  Google Scholar 

  • Mahfouz RA, Hoteit R, Salem Z, Bazarbachi A, Mugharbel A, Farhat F, Ziyadeh A, Ibrahim A, Taher A (2011) JAK2 V617F gene mutation in the laboratory work-up of myeloproliferative disorders: experience of a major referral center in Lebanon. Genet Test Mol Biomarkers 15(4):263–265

    Article  CAS  PubMed  Google Scholar 

  • Morris DL, Rui L (2009) Recent advances in understanding leptin signaling and leptin resistance. Am J Physiol Endocrinol Metab 297(6):E1247–E1259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Noon-Song EN, Ahmed CM, Dabelic R, Canton J, Johnson HM (2011) Controlling nuclear JAKs and STATs for specific gene activation by IFNgamma. Biochem Biophys Res Commun 410(3):648–653

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oh ST, Gotlib J (2010) JAK2 V617F and beyond: role of genetics and aberrant signaling in the pathogenesis of myeloproliferative neoplasms. Expert Rev Hematol 3(3):323–337

    Article  CAS  PubMed  Google Scholar 

  • Pakladok T, Almilaji A, Munoz C, Alesutan I, Lang F (2013) PIKfyve sensitivity of hERG channels. Cell Physiol Biochem 31(6):785–794. doi:10.1159/000350096

    Article  CAS  PubMed  Google Scholar 

  • Pardanani A, Vannucchi AM, Passamonti F, Cervantes F, Barbui T, Tefferi A (2011) JAK inhibitor therapy for myelofibrosis: critical assessment of value and limitations. Leukemia 25(2):218–225

    Article  CAS  PubMed  Google Scholar 

  • Park SO, Wamsley HL, Bae K, Hu Z, Li X, Choe SW, Slayton WB, Oh SP, Wagner KU, Sayeski PP (2013) Conditional deletion of Jak2 reveals an essential role in hematopoiesis throughout mouse ontogeny: implications for Jak2 inhibition in humans. PLoS ONE 8(3):e59675. doi:10.1371/journal.pone.0059675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pathare G, Foller M, Daryadel A, Mutig K, Bogatikov E, Fajol A, Almilaji A, Michael D, Stange G, Voelkl J, Wagner CA, Bachmann S, Lang F (2012) OSR1-sensitive renal tubular phosphate reabsorption. Kidney Blood Press Res 36(1):149–161

    Article  CAS  PubMed  Google Scholar 

  • Qiu J, Fang Y, Ronnekleiv OK, Kelly MJ (2010) Leptin excites proopiomelanocortin neurons via activation of TRPC channels. J Neurosci 30(4):1560–1565. doi:10.1523/JNEUROSCI.4816-09.2010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rexhepaj R, Artunc F, Grahammer F, Nasir O, Sandu C, Friedrich B, Kuhl D, Lang F (2006) SGK1 is not required for regulation of colonic ENaC activity. Pflugers Arch 453(1):97–105. doi:10.1007/s00424-006-0111-4

    Article  CAS  PubMed  Google Scholar 

  • Ross SB, Fuller CM, Bubien JK, Benos DJ (2007) Amiloride-sensitive Na+ channels contribute to regulatory volume increases in human glioma cells. Am J Physiol Cell Physiol 293(3):C1181–C1185. doi:10.1152/ajpcell.00066.2007

    Article  CAS  PubMed  Google Scholar 

  • Rossier BC, Pradervand S, Schild L, Hummler E (2002) Epithelial sodium channel and the control of sodium balance: interaction between genetic and environmental factors. Annu Rev Physiol 64:877–897. doi:10.1146/annurev.physiol.64.082101.143243

    Article  CAS  PubMed  Google Scholar 

  • Santos FP, Verstovsek S (2011) JAK2 inhibitors: what’s the true therapeutic potential? Blood Rev 25(2):53–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmid E, Bhandaru M, Nurbaeva MK, Yang W, Szteyn K, Russo A, Leibrock C, Tyan L, Pearce D, Shumilina E, Lang F (2012) SGK3 regulates Ca entry and migration of dendritic cells. Cell Physiol Biochem 30(6):1423–1435

    Article  CAS  PubMed  Google Scholar 

  • Selvaraj NG, Omi E, Gibori G, Rao MC (2000) Janus kinase 2 (JAK2) regulates prolactin-mediated chloride transport in mouse mammary epithelial cells through tyrosine phosphorylation of Na+–K+–2Cl-cotransporter. Mol Endocrinol 14(12):2054–2065

    CAS  PubMed  Google Scholar 

  • Shen XL, Wei W, Xu HL, Zhang MX, Qin XQ, Shi WZ, Jiang ZP, Chen YJ, Chen FP (2010) JAK2V617F/STAT5 signaling pathway promotes cell proliferation through activation of pituitary tumor transforming gene 1 expression. Biochem Biophys Res Commun 398(4):707–712

    Article  CAS  PubMed  Google Scholar 

  • Snyder PM (2009) Down-regulating destruction: phosphorylation regulates the E3 ubiquitin ligase Nedd4-2. Sci Signal 2(79):pe41. doi:10.1126/scisignal.279pe41

    Article  PubMed  Google Scholar 

  • Spivak JL (2010) Narrative review: thrombocytosis, polycythemia vera, and JAK2 mutations: the phenotypic mimicry of chronic myeloproliferation. Ann Intern Med 152(5):300–306

    Article  PubMed  Google Scholar 

  • Tefferi A (2010) Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia 24(6):1128–1138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Venkitachalam S, Chueh FY, Yu CL (2012) Nuclear localization of lymphocyte-specific protein tyrosine kinase (Lck) and its role in regulating LIM domain only 2 (Lmo2) gene. Biochem Biophys Res Commun 417(3):1058–1062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Villarreal D, Reams G, Freeman RH, Taraben A (1998) Renal effects of leptin in normotensive, hypertensive, and obese rats. Am J Physiol 275(6 Pt 2):R2056–R2060

    CAS  PubMed  Google Scholar 

  • Villarreal D, Reams G, Freeman R, Spear R, Tchoukina I, Samar H (2006) Leptin blockade attenuates sodium excretion in saline-loaded normotensive rats. Mol Cell Biochem 283(1–2):153–157. doi:10.1007/s11010-006-2567-0

    Article  CAS  PubMed  Google Scholar 

  • Wolf A, Eulenfeld R, Gabler K, Rolvering C, Haan S, Behrmann I, Denecke B, Haan C, Schaper F (2013) JAK2-V617F-induced MAPK activity is regulated by PI3K and acts synergistically with PI3K on the proliferation of JAK2-V617F-positive cells. JAK-STAT 2(3):e24574. doi:10.4161/jkst.24574

    Article  PubMed Central  PubMed  Google Scholar 

  • Xia XM, Zeng X, Lingle CJ (2002) Multiple regulatory sites in large-conductance calcium-activated potassium channels. Nature 418(6900):880–884

    Article  CAS  PubMed  Google Scholar 

  • Yang N, Jiang J, Deng L, Waters MJ, Wang X, Frank SJ (2010) Growth hormone receptor targeting to lipid rafts requires extracellular subdomain 2. Biochem Biophys Res Commun 391(1):414–418

    Article  CAS  PubMed  Google Scholar 

  • Yao X, Balamurugan P, Arvey A, Leslie C, Zhang L (2010) Heme controls the regulation of protein tyrosine kinases Jak2 and Src. Biochem Biophys Res Commun 403(1):30–35

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yeh TC, Pellegrini S (1999) The Janus kinase family of protein tyrosine kinases and their role in signaling. CMLS 55(12):1523–1534

    Article  CAS  PubMed  Google Scholar 

  • Yokota I, Hayashi H, Matsuda J, Saijo T, Naito E, Ito M, Ebina Y, Kuroda Y (1998) Effect of growth hormone on the translocation of GLUT4 and its relation to insulin-like and anti-insulin action. Biochim Biophys Acta 1404(3):451–456

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the meticulous preparation of the manuscript by Lejla Subasic and technical support by Elfriede Faber. This study was supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosseinzadeh, Z., Luo, D., Sopjani, M. et al. Down-Regulation of the Epithelial Na+ Channel ENaC by Janus kinase 2. J Membrane Biol 247, 331–338 (2014). https://doi.org/10.1007/s00232-014-9636-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9636-1

Keywords

Navigation