Skip to main content
Log in

Downregulation of KCNQ4 by Janus Kinase 2

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Janus kinase-2 (JAK2) participates in the signaling of several hormones, growth factors and cytokines. Further stimulators of JAK2 include osmotic cell shrinkage, and the kinase activates the cell volume regulatory Na+/H+ exchanger. The kinase may thus participate in cell volume regulation. Cell shrinkage is known to inhibit K+ channels. Volume-regulatory K+ channels include the voltage-gated K+ channel KCNQ4. The present study explored the effect of JAK2 on KCNQ4 channel activity. KCNQ4 was expressed in Xenopus oocytes with or without wild-type JAK2, constitutively active V617FJAK2 or inactive K882EJAK2; and cell membrane conductance was determined by dual-electrode voltage clamp. Expression of KCNQ4 was followed by the appearance of voltage-gated K+ conductance. Coexpression of JAK2 or of V617FJAK2, but not of K882EJAK2, resulted in a significant decrease in conductance. Treatment of KCNQ4 and JAK2 coexpressing oocytes with the JAK2 inhibitor AG490 (40 μM) was followed by an increase in conductance. Treatment of KCNQ4 expressing oocytes with brefeldin A (5 μM) was followed by a decrease in conductance, which was similar in oocytes expressing KCNQ4 together with JAK2 as in oocytes expressing KCNQ4 alone. Thus, JAK2 apparently does not accelerate channel protein retrieval from the cell membrane. In conclusion, JAK2 downregulates KCNQ4 activity and thus counteracts K+ exit, an effect which may contribute to cell volume regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Banes-Berceli AK, Al Azawi H, Proctor D et al (2011) Angiotensin II utilizes Janus kinase 2 in hypertension, but not in the physiologic control of blood pressure, during low salt intake. Am J Physiol Regul Integr Comp Physiol 301:R1169–R1176

    Article  PubMed  CAS  Google Scholar 

  • Baskin R, Majumder A, Sayeski PP (2010) The recent medicinal chemistry development of Jak2 tyrosine kinase small molecule inhibitors. Curr Med Chem 17:4551–4558

    Article  PubMed  CAS  Google Scholar 

  • Bhavsar SK, Hosseinzadeh Z, Merches K et al (2011) Stimulation of the amino acid transporter SLC6A19 by JAK2. Biochem Biophys Res Commun 414:456–461

    Article  PubMed  CAS  Google Scholar 

  • Bohmer C, Sopjani M, Klaus F et al (2010) The serum and glucocorticoid inducible kinases SGK1-3 stimulate the neutral amino acid transporter SLC6A19. Cell Physiol Biochem 25:723–732

    Article  PubMed  Google Scholar 

  • Brooks AJ, Waters MJ (2010) The growth hormone receptor: mechanism of activation and clinical implications. Nat Rev Endocrinol 6:515–525

    Article  PubMed  CAS  Google Scholar 

  • Dermaku-Sopjani M, Sopjani M, Saxena A et al (2011) Downregulation of NaPi-IIa and NaPi-IIb Na-coupled phosphate transporters by coexpression of Klotho. Cell Physiol Biochem 28:251–258

    Article  PubMed  CAS  Google Scholar 

  • Eckey K, Strutz-Seebohm N, Katz G et al (2010) Modulation of human ether a gogo related channels by CASQ2 contributes to etiology of catecholaminergic polymorphic ventricular tachycardia (CPVT). Cell Physiol Biochem 26:503–512

    Article  PubMed  CAS  Google Scholar 

  • Feng J, Witthuhn BA, Matsuda T et al (1997) Activation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol Cell Biol 17:2497–2501

    PubMed  CAS  Google Scholar 

  • Garnovskaya MN, Mukhin YV, Vlasova TM et al (2003) Hypertonicity activates Na+/H+ exchange through Janus kinase 2 and calmodulin. J Biol Chem 278:16908–16915

    Article  PubMed  CAS  Google Scholar 

  • Gatsios P, Terstegen L, Schliess F et al (1998) Activation of the Janus kinase/signal transducer and activator of transcription pathway by osmotic shock. J Biol Chem 273:22962–22968

    Article  PubMed  CAS  Google Scholar 

  • Hammami S, Willumsen NJ, Olsen HL et al (2009) Cell volume and membrane stretch independently control K+ channel activity. J Physiol 587:2225–2231

    Article  PubMed  CAS  Google Scholar 

  • Heidenreich M, Lechner SG, Vardanyan V et al (2012) KCNQ4 K+ channels tune mechanoreceptors for normal touch sensation in mouse and man. Nat Neurosci 15:138–145

    Article  CAS  Google Scholar 

  • Henrion U, Renhorn J, Borjesson SI et al (2012) Tracking a complete voltage-sensor cycle with metal-ion bridges. Proc Natl Acad Sci USA 109:8552–8557

    Article  PubMed  CAS  Google Scholar 

  • Ho K, Valdez F, Garcia R et al (2010) JAK2 Translocations in hematological malignancies: review of the literature. J Assoc Genet Technol 36:107–109

    PubMed  Google Scholar 

  • Hosseinzadeh Z, Bhavsar SK, Shojaiefard M et al (2011a) Stimulation of the glucose carrier SGLT1 by JAK2. Biochem Biophys Res Commun 408:208–213

    Article  PubMed  CAS  Google Scholar 

  • Hosseinzadeh Z, Bhavsar SK, Sopjani M et al (2011b) Regulation of the glutamate transporters by JAK2. Cell Physiol Biochem 28:693–702

    Article  PubMed  CAS  Google Scholar 

  • Hosseinzadeh Z, Bhavsar SK, Lang F (2012a) Downregulation of ClC-2 by JAK2. Cell Physiol Biochem 29:737–742

    PubMed  CAS  Google Scholar 

  • Hosseinzadeh Z, Shojaiefard M, Bhavsar SK et al (2012b) Up-regulation of the betaine/GABA transporter BGT1 by JAK2. Biochem Biophys Res Commun 420:172–177

    Article  PubMed  CAS  Google Scholar 

  • Hougaard C, Klaerke DA, Hoffmann EK et al (2004) Modulation of KCNQ4 channel activity by changes in cell volume. Biochim Biophys Acta 1660:1–6

    Article  PubMed  CAS  Google Scholar 

  • Hunziker W, Whitney JA, Mellman I (1992) Brefeldin A and the endocytic pathway. Possible implications for membrane traffic and sorting. FEBS Lett 307:93–96

    Article  PubMed  CAS  Google Scholar 

  • Jepps TA, Greenwood IA, Moffatt JD et al (2009) Molecular and functional characterization of Kv7 K+ channel in murine gastrointestinal smooth muscles. Am J Physiol Gastrointest Liver Physiol 297:G107–G115

    Article  PubMed  CAS  Google Scholar 

  • Jepps TA, Chadha PS, Davis AJ et al (2011) Downregulation of Kv7.4 channel activity in primary and secondary hypertension. Circulation 124:602–611

    Article  PubMed  CAS  Google Scholar 

  • Joshi S, Sedivy V, Hodyc D et al (2009) KCNQ modulators reveal a key role for KCNQ potassium channels in regulating the tone of rat pulmonary artery smooth muscle. J Pharmacol Exp Ther 329:368–376

    Article  PubMed  CAS  Google Scholar 

  • Lang F, Busch GL, Ritter M et al (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:247–306

    PubMed  CAS  Google Scholar 

  • Lang F, Shumilina E, Ritter M et al (2006) Ion channels and cell volume in regulation of cell proliferation and apoptotic cell death. Contrib Nephrol 152:142–160

    Article  PubMed  CAS  Google Scholar 

  • Lopez AF, Hercus TR, Ekert P et al (2010) Molecular basis of cytokine receptor activation. IUBMB Life 62:509–518

    Article  PubMed  CAS  Google Scholar 

  • Macri P, Breton S, Marsolais M et al (1997) Hypertonicity decreases basolateral K+ and Cl conductances in rabbit proximal convoluted tubule. J Membr Biol 155:229–237

    Article  PubMed  CAS  Google Scholar 

  • Mahfouz RA, Hoteit R, Salem Z et al (2011) JAK2 V617F gene mutation in the laboratory work-up of myeloproliferative disorders: experience of a major referral center in Lebanon. Genet Test Mol Biomarkers 15:263–265

    Article  PubMed  CAS  Google Scholar 

  • Mistry HD, McCallum LA, Kurlak LO et al (2011) Novel expression and regulation of voltage-dependent potassium channels in placentas from women with preeclampsia. Hypertension 58:497–504

    Article  PubMed  CAS  Google Scholar 

  • Morris DL, Rui L (2009) Recent advances in understanding leptin signaling and leptin resistance. Am J Physiol Endocrinol Metab 297:E1247–E1259

    Article  PubMed  CAS  Google Scholar 

  • Nie L (2008) KCNQ4 mutations associated with nonsyndromic progressive sensorineural hearing loss. Curr Opin Otolaryngol Head Neck Surg 16:441–444

    Article  PubMed  Google Scholar 

  • Oh ST, Gotlib J (2010) JAK2 V617F and beyond: role of genetics and aberrant signaling in the pathogenesis of myeloproliferative neoplasms. Expert Rev Hematol 3:323–337

    Article  PubMed  CAS  Google Scholar 

  • Pardanani A, Vannucchi AM, Passamonti F et al (2011) JAK inhibitor therapy for myelofibrosis: critical assessment of value and limitations. Leukemia 25:218–225

    Article  PubMed  CAS  Google Scholar 

  • Rexhepaj R, Dermaku-Sopjani M, Gehring EM et al (2010) Stimulation of electrogenic glucose transport by glycogen synthase kinase 3. Cell Physiol Biochem 26:641–646

    Article  PubMed  CAS  Google Scholar 

  • Santos FP, Verstovsek S (2011) JAK2 inhibitors: what’s the true therapeutic potential? Blood Rev 25:53–63

    Article  PubMed  CAS  Google Scholar 

  • Seebohm G, Strutz-Seebohm N, Baltaev R et al (2005) Regulation of KCNQ4 potassium channel prepulse dependence and current amplitude by SGK1 in Xenopus oocytes. Cell Physiol Biochem 16:255–262

    Article  PubMed  CAS  Google Scholar 

  • Shojaiefard M, Hosseinzadeh Z, Bhavsar SK et al (2012) Downregulation of the creatine transporter SLC6A8 by JAK2. J Membr Biol 245:157–163

    Article  PubMed  CAS  Google Scholar 

  • Sotty F, Damgaard T, Montezinho LP et al (2009) Antipsychotic-like effect of retigabine [N-(2-amino-4-(fluorobenzylamino)-phenyl)carbamic acid ester], a KCNQ potassium channel opener, via modulation of mesolimbic dopaminergic neurotransmission. J Pharmacol Exp Ther 328:951–962

    Article  PubMed  CAS  Google Scholar 

  • Spivak JL (2010) Thrombocytosis, polycythemia vera, and JAK2 mutations: the phenotypic mimicry of chronic myeloproliferation. Ann Intern Med 152:300–306

    PubMed  Google Scholar 

  • Staub O, Gautschi I, Ishikawa T et al (1997) Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination. EMBO J 16:6325–6336

    Article  PubMed  CAS  Google Scholar 

  • Strutz-Seebohm N, Seebohm G, Fedorenko O et al (2006) Functional coassembly of KCNQ4 with KCNE-beta-subunits in Xenopus oocytes. Cell Physiol Biochem 18:57–66

    Article  PubMed  CAS  Google Scholar 

  • Strutz-Seebohm N, Pusch M, Wolf S et al (2011) Structural basis of slow activation gating in the cardiac I Ks channel complex. Cell Physiol Biochem 27:443–452

    Article  PubMed  CAS  Google Scholar 

  • Tefferi A (2010) Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia 24:1128–1138

    Article  PubMed  CAS  Google Scholar 

  • Tefferi A, Skoda R, Vardiman JW (2009) Myeloproliferative neoplasms: contemporary diagnosis using histology and genetics. Nat Rev Clin Oncol 6:627–637

    Article  PubMed  CAS  Google Scholar 

  • Walter S, Atzmon G, Demerath EW et al (2011) A genome-wide association study of aging. Neurobiol Aging 32:2109–2128

    PubMed  Google Scholar 

  • Wang W, Gao XF, Xiao L et al (2011) K(V)7/KCNQ channels are functionally expressed in oligodendrocyte progenitor cells. PLoS One 6:e21792

    Article  PubMed  CAS  Google Scholar 

  • Wei L, Xiao AY, Jin C et al (2004) Effects of chloride and potassium channel blockers on apoptotic cell shrinkage and apoptosis in cortical neurons. Pflugers Arch 448:325–334

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the meticulous preparation of the manuscript by Lejla Subasic and Sari Rübe and technical support by Elfriede Faber. This study was supported by the Deutsche Forschungsgemeinschaft (GRK 1302, SFB 773 B4/A1, La 315/13-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Lang.

Additional information

The first two authors contributed equally and thus share first authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosseinzadeh, Z., Sopjani, M., Pakladok, T. et al. Downregulation of KCNQ4 by Janus Kinase 2. J Membrane Biol 246, 335–341 (2013). https://doi.org/10.1007/s00232-013-9537-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-013-9537-8

Keywords

Navigation