Skip to main content
Log in

Manufacture of a biporous nickel wick and its effect on LHP heat transfer performance enhancement

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This work describes a mixed powder sintering method that uses polymer as sacrificial substance to manufacture wicks for LHPs to improve the heat transfer performance of a conventional monoporous wick during high heat flux in LHP. The proposed porous manufacturing method is simple, efficient, structurally sound, and easily managed. Compared to findings in literatures for LHPs with monoporous wicks, the heat transfer performance of the proposed method is enhanced by nearly 80 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A h :

Heat exchange area (mm2)

D o :

Porous material outside diameter (mm)

D i :

Porous material inside diameter (mm)

h e :

Evaporation heat transfer coefficient (kW/m2 °C)

K w :

Permeability of porous structure (m2)

L w :

Wick length (mm)

Mw :

Density of the test liquid (kg/m3)

:

Fluid mass flow rate (kg/s)

∆P:

Pressure drop (N/m2)

Q :

Input wattage (W)

R total :

LHP total thermal resistance (°C/W)

T e :

Evaporator surface temperature (°C)

T c :

Condenser temperature (°C)

T v :

Vapor temperature (°C)

W t :

Weight of wick infused with test fluid (kg)

W w :

Wick net weight (kg)

σ:

Fluid surface tension coefficient (kg/m s)

ρ l :

Fluid density (density of test fluid) (kg/m3)

μ l :

Fluid viscosity coefficient (kg/m s)

References

  1. Maidanik YF, Vershinin SV, Kholodov VF, Dolgirev JE, (1985) Heat transfer apparatus, US Patent, No. 5015209

  2. Liao Q, Zhao TS (1999) Evaporative heat transfer in a capillary structure heated by a grooved block. J Thermophys Heat Transf 13(1):126–133

    Article  Google Scholar 

  3. Rasor NS, Desplat JL (1989) K-max: a material with exceptional heat transfer properties, In: Proceedings IECEC 24, Washington, IECEC 899217

  4. Rosenfeld JH, Gernert NJ, North MT (1994) Internally extended surface heat pipe evaporators for microelectronics cooling, Geoffrey F. Hewitt. ASME HTD 273, UK, pp 93–100

    Google Scholar 

  5. North MT, Sarraf DB, Rosenfeld JH, Maidanik YF, Vershinin S (1997) High heat flux loop heat pipes, In: Proceedings ESSECS 6, Noordwijk, p 371–376

  6. Chen ZQ, Cheng P, Zhao TS (2000) An experimental study of two phase flow and boiling heat transfer in bi-dispersed porous channels. Int Commun Heat Mass Transf 27(3):293–320

    Article  Google Scholar 

  7. Wang J, Catton I (2001) Biporous heat pipes for high power electronic device cooling. In: Proceedings semi-therm. 17, San Jose, p 211–218

  8. Cao XL, Cheng P, Zhao TS (2002) Experimental study of evaporative heat transfer in sintered copper bidispersed wick structures. J Thermophys Heat Transfer 16(4):547–552

    Article  Google Scholar 

  9. Wang J, Catton I (2004) Vaporization heat transfer in biporous wicks of heat pipe evaporators. Proceedings of the 13th international heat pipe conference, Vol. 2, p 76–86

  10. Merilo EG, Semenic T, Catton I (2004) Experimental investigation of boiling heat transfer in bidispersed media. Proceedings of the 13th international heat pipe conference, Vol. 2, p 87–93

  11. Semenic T, Lin YY, Catton I (2005) Biporous sintered copper for closed loop heat pipe evaporator. In: ASME 2005 International Mechanical Engineering Congress and Exposition Heat Transfer, Part A, Orlando, Florida

  12. Maidanik YF (2005) Loop heat pipes—review. Appl Thermal Eng 25(56):635–657

    Article  Google Scholar 

  13. Furberg R, Li S, Palm B, Toprak M, Muhammed M (2006) Dendritically order nano-particles in a micro-porous structure for enhanced boiling, Proceedings of 13th international heat transfer conference, NAN-07

  14. Semenic T, Catton I (2006) Boiling and capillary limit enhancement of a heat pipe wick using biporous wick capillary structure, In: Proceedings IHTC 13, Sydney, PRT-18

  15. Yeh CC, Liu BH, Chen YM (2008) A study of loop heat pipe with biporous wicks. Int J Heat Mass Transf 44(12):1537–1547

    Article  Google Scholar 

  16. Yeh CC, Chen CN, Chen YM (2009) Heat transfer analysis of a loop heat pipe with biporous wicks. Int J Heat Mass Transf 52(19–20):4426–4434

    Article  Google Scholar 

  17. Li J, Zou Y, Cheng L (2010) Experimental study on capillary pumping performance of porous wicks for loop heat pipe. Exp Therm Fluid Sci 34:1403–1408

    Article  Google Scholar 

  18. Tracey VA (1984) Pressing and sintering of nickel powders. Int J Powder Metall Powder Technol 20(4):281–285

    Google Scholar 

  19. Wu SC, Huang CJ, Gao JH (2012) Effect of filling powder volume rat in wick manufactured for loop heat pipes. Adv Mater Res 488–489:321–327

    Article  Google Scholar 

  20. Wu SC, Huang CJ, Yang WH, Chang JC, Kung CC (2012) Effect of sintering temperature curve in wick manufactured for loop heat pipe. World Acad Sci, Eng Technol 62:631–636

    Google Scholar 

  21. Ku J (1999) Operating characteristics of loop heat pipe, 29th International Conference on Environmental Systems Denver, Colorado

  22. Wu SC, Huang CJ, Yang WH, Lai JH, Gao JH, Ya WL (2012) Effect of working fluid filling amount in loop heat pipes. Eng Technol 62:631–636

    Google Scholar 

  23. Kline SJ, McClintock FA (1953) Describing uncertainties in single-sample experiments. Mech. Eng. 75:3–8

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Council of the Republic of China, Taiwan, for financially supporting this research under Contract No. NSC:101-2221-E-157-003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (JPEG 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S.C., Hsieh, B.H., Wang, D. et al. Manufacture of a biporous nickel wick and its effect on LHP heat transfer performance enhancement. Heat Mass Transfer 51, 1549–1558 (2015). https://doi.org/10.1007/s00231-015-1503-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1503-9

Keywords

Navigation