Skip to main content

Advertisement

Log in

Long-term persistence and evolutionary divergence of a marine fish population with a very small effective population size (Kildin cod Gadus morhua kildinensis)

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The effective population size (Ne) is a crucial characteristic of numerically small populations, positively correlated with their ability to persist in a changing environment and to evolve. Information about the lower bounds of Ne of natural populations is both theoretically interesting and practically important. We studied Kildin cod, an isolated population of Atlantic cod Gadus morhua from an ecologically marginal habitat (marine lake), comparing it with the parental Barents Sea population by a set of 20 microsatellite and protein loci. Overall, the genetic variability in Kildin cod was low (mean allelic richness and heterozygosity: Kildin cod 1.6, 0.26; marine cod 11.6, 0.73). We detected a single locus, the glucose-6-phosphate isomerase-1, which demonstrated a unique variation in the lake. At this locus, about 75 % of the lacustrine fishes carried an allele not found in the sea. The obtained genetic estimates of Ne of Kildin cod (less than a hundred) were much smaller than what is considered as the smallest Ne of a viable population. At the same time, Kildin cod is known to be healthy and productive. Based on the results of bottleneck tests, we hypothesize that Kildin cod has experienced founder-flush dynamics that lead to loss of genetic variation during the founder phase(s) and purging of genetic load and the rise of adaptation during flush phase(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amadon D (1949) The seventy-five per cent rule for subspecies. Condor 51:250–258

    Article  Google Scholar 

  • Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinform 9:323. doi:10.1186/1471-2105-9-323

    Article  Google Scholar 

  • Beaumont M, Nichols R (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc B 263:1619–1626. doi:10.1098/rspb.1996.0237

    Article  Google Scholar 

  • Berthier P, Beaumont MA, Cornuet J-M, Luikart G (2002) Likelihood-based estimation of the effective population size using temporal changes in allele frequencies: a genealogical approach. Genetics 160:741–751

    CAS  Google Scholar 

  • Bijlsma R, Loeschcke V (2012) Genetic erosion impedes adaptive responses to stressful environments. Evol Appl 5:117–129. doi:10.1111/j.1752-4571.2011.00214.x

    Article  CAS  Google Scholar 

  • Carr MH, Neigel JE, Estes JA, Andelman S, Warner RR, Largier JL (2003) Comparing marine and terrestrial ecosystems: implications for the design of coastal marine reserves. Ecol Appl 13:90–107

    Article  Google Scholar 

  • Carson HL, Templeton AR (1984) Genetic revolutions in relation to speciation phenomena: the founding of new populations. Annu Rev Ecol Evol Syst 15:97–131. doi:10.1146/annurev.es.15.110184.000525

    Article  Google Scholar 

  • Charlier J, Laikre L, Ryman N (2012) Genetic monitoring reveals temporal stability over 30 years in a small, lake resident brown trout population. Heredity 109:246–253. doi:10.1038/hdy.2012.36

    Article  CAS  Google Scholar 

  • Comps B, Gömöry D, Letouzey J, Thiébaut B, Petit RJ (2001) Diverging trends between heterozygosity and allelic richness during postglacial colonization in the European beech. Genetics 157:389–397

    CAS  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland

    Google Scholar 

  • Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper & Row, New York

    Google Scholar 

  • Dawson MN, Hamner WM (2005) Rapid evolutionary radiation of marine zooplankton in peripheral environments. Proc Natl Acad Sci USA 102:9235–9240. doi:10.1073/pnas.0503635102

    Article  CAS  Google Scholar 

  • Dawson MN, Hamner WM (2008) A biophysical perspective on dispersal and the geography of evolution in marine and terrestrial systems. J R Soc Interface 5:135–150. doi:10.1098/rsif.2007.1089

    Article  Google Scholar 

  • Derjugin KM (1925) Relict Lake Mogilnoe (Island Kildin in the Barents Sea). Glavnauka, Leningrad (in Russian)

    Google Scholar 

  • Earl D, von Holdt B (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:1–3. doi:10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587. doi:10.1111/j.1471-8286.2007.01758.x

    CAS  Google Scholar 

  • Fox CW, Reed DH (2011) Inbreeding depression increases with environmental stress: an experimental study and meta-analysis. Evolution 65:246–258. doi:10.1111/j.1558-5646.2010.01108.x

    Article  Google Scholar 

  • Frankham R (1997) Do island populations have less genetic variation than mainland populations? Heredity 78:311–327. doi:10.1038/hdy.1997.46

    Article  Google Scholar 

  • Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, red list criteria and population viability analyses. Biol Conserv 170:56–63. doi:10.1016/j.biocon.2013.12.036

    Article  Google Scholar 

  • Fraser DJ, Debes PV, Bernatchez L, Hutchings JA (2014) Population size, habitat fragmentation, and the nature of adaptive variation in a stream fish. Proc R Soc B. 281:20140370. doi:10.1098/rspb.2014.0370

    Article  Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318

    Article  CAS  Google Scholar 

  • Gosset CC, Bierne N (2013) Differential introgression from a sister species explains high F(ST) outlier loci within a mussel species. J Evol Biol 26:14–26. doi:10.1111/jeb.12046

    Article  CAS  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www2.unil.ch/popgen/softwares/fstat.htm

  • Gurevich VI (1975) Relief, bathimetry, morphometry. In: Gurevich VI, Zeeb RYA (eds) Relict Lake Mogilnoe. Nauka, Leningrad, pp 18–21 (in Russian)

    Google Scholar 

  • Gurevich VI, Liiva AA (1975) Age of the lake Mogilnoe. In: Gurevich VI, Zeeb RYA (eds) Relict Lake Mogilnoe. Nauka, Leningrad, pp 102–104 (in Russian)

    Google Scholar 

  • Hardie DC, Gillett RM, Hutchings JA (2006) The effects of isolation and colonization on the genetic structure of marine relict populations of Atlantic cod (Gadus morhua) in the Canadian Arctic. Can J Fish Aqua Sci 63:1830–1839. doi:10.1139/F06-085

    Article  Google Scholar 

  • Hardie DC, Renaud CB, Ponomarenko VP, Mukhina NV, Yaragina NA, Skjaeraasen JE, Hutchings JA (2008) The isolation of Atlantic cod Gadus morhua (Gadiformes), populations in northern meromictic lakes—a recurrent Arctic phenomenon. J Ichthyol 48:230–240. doi:10.1134/S0032945208030053

    Article  Google Scholar 

  • Hauser L, Carvalho GR (2008) Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish 9:333–362. doi:10.1111/j.1467-2979.2008.00299.x

    Article  Google Scholar 

  • Hedgecock D (1994) Does variance in reproductive success limit effective population sizes of marine organisms? In: Beaumont AR (ed) Genetics and evolution of aquatic organisms. Chapman & Hall, London, pp 122–134

    Google Scholar 

  • Hedgecock D, Pudovkin A (2011) Sweepstakes reproductive success in highly fecund marine fish and shellfish: a review and commentary. Bull Mar Sci 87:971–1002. doi:10.5343/bms.2010.1051

    Article  Google Scholar 

  • Hutchings JA, Reynolds JD (2004) Marine fish population collapses: consequences for recovery and extinction. Bioscience 54:297–309. doi:10.1641/0006-3568(2004)054

    Article  Google Scholar 

  • Hutchinson WF, van Oosterhout C, Rogers SI, Carvalho GR (2003) Temporal analysis of archived samples indicates marked genetic changes in declining North Sea cod (Gadus morhua). Proc R Soc B 270:2125–2132. doi:10.1098/rspb.2003.2493

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806. doi:10.1111/j.1471-8286.2007.01769.x

    Article  CAS  Google Scholar 

  • Jansson E, Ruokonen M, Kojola I, Aspi J (2012) Rise and fall of a wolf population: genetic diversity and structure during recovery, rapid expansion and drastic decline. Mol Ecol 21:5178–5193. doi:10.1111/mec.12010

    Article  CAS  Google Scholar 

  • Johnson JA, Tingay RE, Culver M, Hailer F, Clarke ML, Mindell DP (2009) Long-term survival despite low genetic diversity in the critically endangered Madagascar fish-eagle. Mol Ecol 18:54–63. doi:10.1111/j.1365-294X.2008.04012.x

    Google Scholar 

  • Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555. doi:10.1111/j.1755-0998.2009.02787.x

    Article  Google Scholar 

  • Jørstad KE, Nævdal G (1989) Genetic variation and population structure of cod, Gadus morhua L, in some fjords in northern Norway. J Fish Biol 35:245–252. doi:10.1111/j.1095-8649.1989.tb03067.x

    Article  Google Scholar 

  • Jørstad KE, Nævdal G, Paulsen OI, Torkildsen S (1994) Release and recapture of genetically tagged cod fry in a Norwegian fjord system. In: Beaumont AR (ed) Genetics and evolution of aquatic organisms. Chapman & Hall, London, pp 519–528

    Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241. doi:10.1016/s0169-5347(02)02489-8

    Article  Google Scholar 

  • Koskinen MT, Haugen TO, Primmer CR (2002) Contemporary fisherian life-history evolution in small salmonid populations. Nature 419:826–830. doi:10.1038/nature01029

    Article  CAS  Google Scholar 

  • Kuo C-H, Janzen FJ (2003) BOTTLESIM: a bottleneck simulation program for long-lived species with overlapping generations. Mol Ecol Notes 3:669–673. doi:10.1046/j.1471-8286.2003.00532.x

    Article  CAS  Google Scholar 

  • Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460. doi:10.1126/science.3420403

    Article  CAS  Google Scholar 

  • Linschoten Van JH (1601) Voyagie ofte Schip-vaert, van Ian Hvyghen van Linschoten, van by Noorden om langes Noorvvegen de Noortcaep, Laplant, Vinlant, Russlandt, de VVitte Zee, de Custen van Candenoes, Svvetenoes, Pitzora, &c. door de Strate ofte Engte van Nassau tot voorby de Revier Oby. Gerard Ketel, Ghedruct tot Franeker (in Dutch)

  • Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247. doi:10.1093/jhered/89.3.238

    Article  CAS  Google Scholar 

  • Luikart G, Ryman N, Tallmon DA, Schwartz MK, Allendorf FW (2010) Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv Genet 11:355–373. doi:10.1007/s10592-010-0050-7

    Article  CAS  Google Scholar 

  • Mayr E (1954) Change of genetic environment and evolution. In: Huxley J, Hardy AC, Ford EB (eds) Evolution as a process. Allen & Unwin, London, pp 157–180

    Google Scholar 

  • Miller KM, Le KD, Beacham TD (2000) Development of tri- and tetranucleotide repeat microsatellite loci in Atlantic cod (Gadus morhua). Mol Ecol 9:238–239. doi:10.1046/j.1365-294x.2000.00804-2.x

    Article  CAS  Google Scholar 

  • Mityaev MV, Korsun SA, Strelkov PP, Matishov GG (2008) Ancient coastlines of Eastern Kildin. Dokl Earth Sci 423:1455–1458. doi:10.1134/S1028334X08090298

    Article  Google Scholar 

  • Mork J, Reuterwall C, Ryman N, Stahl G (1982) Genetic variation in Atlantic cod (Gadus morhua L.): a quantitative estimate from a Norwegian coastal population. Hereditas 96:55–61

    Article  Google Scholar 

  • Mukhina NV, Lepesevich NA, Filina EA (2002) Biological state of Kilidinskaya Cod. In: Titov OV (ed) Relict Lake Mogilnoe (studies of 1997–2000). PINRO, Murmank, pp 88–109 (in Russian)

    Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10. doi:10.2307/2407137

    Article  Google Scholar 

  • Norris RD, Hull PM (2012) The temporal dimension of marine speciation. Evol Ecol 26:393–415. doi:10.1007/s10682-011-9488-4

    Article  Google Scholar 

  • Novikov G, Afanas’ev K, Rubtsova G, Stroganov A (2006) Some genetic parameters of Kildin cod Gadus morhua kildinensis (Gadidae, Gadiformes). J Ichthyol 46:674–676

    Article  Google Scholar 

  • O’Reilly PT, McPherson AA, Kenchington E, Taggart C, Jones MW, Bentzen P (2002) Isolation and characterization of tetranucleotide microsatellites from Atlantic haddock (Melanogrammus aeglefinus). Mar Biotechnol 4:418–422. doi:10.1007/s10126-002-0010-4

    Article  Google Scholar 

  • O’Reilly PT, Canino MF, Bailey KM, Bentzen P (2000) Isolation of twenty low stutter di- and tetranucleotide microsatellites for population analyses of walleye pollock and other gadoids. J Fish Biol 56:1074–1086. doi:10.1111/j.1095-8649.2000.tb02124.x

    Article  Google Scholar 

  • Ottersen G, Hjermann D, Stenseth NC (2006) Changes in spawning stock structure strengthens the link between climate and recruitment in a heavily fished cod stock. Fish Oceanogr 15:230–243. doi:10.1111/j.1365-2419.2006.00404.x

    Article  Google Scholar 

  • Ozeretskovsky N (1804) Opisanie Koli i Astrakhani [Description of Kola and Astrakhan]. Emperor Academy of Sciences, St. Petersburg (in Russian)

    Google Scholar 

  • Palo JU, Hyvärinen H, Helle E, Mäkinen HS, Väinölä R (2003) Postglacial loss of microsatellite variation in the landlocked Lake Saimaa ringed seal. Conserv Genet 4:117–128. doi:10.1023/A:1023303109701

    Article  CAS  Google Scholar 

  • Palstra FP, Ruzzante DE (2008) Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol 17:3428–3447. doi:10.1111/j.1365-294X.2008.03842.x

    Article  Google Scholar 

  • Peery MZ, Kirby R, Reid BN, Stoelting R, Doucet-Bëer E, Robinson S, Vasquez-Carrillo C, Pauli JN, Palsbøll PJ (2012) Reliability of genetic bottleneck tests for detecting recent population declines. Mol Ecol 21:3403–3418. doi:10.1111/j.1365-294X.2012.05635.x

    Article  Google Scholar 

  • Pinsky ML, Palumbi SR (2014) Meta-analysis reveals lower genetic diversity in overfished populations. Mol Ecol 23:29–39. doi:10.1111/mec.12509

    Article  Google Scholar 

  • Poulsen NA, Nielsen EE, Schierup MH, Loeschcke V, Grønkjaer P (2006) Long-term stability and effective population size in North Sea and Baltic Sea cod (Gadus morhua). Mol Ecol 15:321–331. doi:10.1111/j.1365-294X.2005.02777.x

    Article  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) Genepop, version 1.2: population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Reed DH (2010) Albatrosses, eagles and newts, Oh My!: exceptions to the prevailing paradigm concerning genetic diversity and population viability? Anim Conserv 13:448–457. doi:10.1111/j.1469-1795.2010.00353.x

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225. doi:10.2307/2409177

    Article  Google Scholar 

  • Robichaud D, Rose GA (2004) Migratory behaviour and range in Atlantic cod: inference from a century of tagging. Fish Fish 5:185–214. doi:10.1111/j.1467-2679.2004.00141.x

    Article  Google Scholar 

  • Robinson JD, Moyer GR (2013) Linkage disequilibrium and effective population size when generations overlap. Evol Appl 6:290–302. doi:10.1111/j.1752-4571.2012.00289.x

    Article  Google Scholar 

  • Ryman N, Allendorf FW, Jorde PE, Laikre L, Hössjer O (2014) Samples from subdivided populations yield biased estimates of effective size that overestimate the rate of loss of genetic variation. Mol Ecol Resour 14:87–99. doi:10.1111/1755-0998.12154

    Article  Google Scholar 

  • Sanford E, Kelly MW (2011) Local adaptation in marine invertebrates. Annu Rev Mar Sci 3:509–535. doi:10.1146/annurev-marine-120709-142756

    Article  Google Scholar 

  • Serebrov LI, Ignashkin VA (2002) An estimate of the population size of Kildin cod. In: Relict Lake Mogilnoe (studies of 1997–2000). PINRO, Murmank, pp 110–116 (in Russian)

  • Shaffer ML (1981) Minimum population sizes for species conservation. Bioscience 31:131–134. doi:10.2307/1308256

    Article  Google Scholar 

  • Skirnisdottir S, Pampoulie C, Hauksdottir S, Schulte I, Olafsson K, Hreggvidsson GO, Hjörleifsdóttir S (2008) Characterization of 18 new microsatellite loci in Atlantic cod (Gadus morhua L.). Mol Ecol Resour 18:1503–1505. doi:10.1111/j.1755-0998.2008.02327.x

    Article  Google Scholar 

  • Skrbinšek T, Jelenčič M, Waits L, Kos I, Jerina K, Trontelj P (2012) Monitoring the effective population size of a brown bear (Ursus arctos) population using new single-sample approaches. Mol Ecol 21:862–875. doi:10.1111/j.1365-294X.2011.05423.x

    Article  Google Scholar 

  • Strelkov P, Shunatova N, Fokin M, Usov N, Fedyuk M, Malavenda S, Lubina O, Poloskin A, Korsun S (2014) Marine Lake Mogilnoe (Kildin Island, Barents Sea): one hundred years of solitude. Polar Biol 37:297–310. doi:10.1007/s00300-013-1431-4

    Article  Google Scholar 

  • Stroganov AN, Afanasiev KI, Rubtsova GA, Rakitskaya TA, Semenova AV (2011) Data on variation of microsatellite loci in Kildin cod Gadus morhua kildinensis (Gadidae). J Ichthyol 51:500–507. doi:10.1134/S0032945211040187

    Article  Google Scholar 

  • Svetovidov AN (1962) Fauna of the U.S.S.R. (Fauna SSSR). Fishes (Ryby). Gadiformes (Treskoobraznye). Israel Program for Scientific Translations, Jerusalem

  • Swatdipong A, Primmer CR, Vasemägi A (2010) Historical and recent genetic bottlenecks in European grayling, Thymallus thymallus. Conserv Genet 11:279–292. doi:10.1007/s10592-009-0031-x

    Article  Google Scholar 

  • Tallmon DA, Luikart G, Waples RS (2004) The alluring simplicity and complex reality of genetic rescue. Trends Ecol Evol 19:489–496. doi:10.1016/j.tree.2004.07.003

    Article  Google Scholar 

  • Tallmon DA, Koyuk A, Luikart G, Beaumont MA (2008) ONeSAMP: a program to estimate effective population size using approximate Bayesian computation. Mol Ecol Resour 8:299–301. doi:10.1111/j.1471-8286.2007.01997.x

    Article  Google Scholar 

  • Therkildsen NO, Nielsen EE, Swain DP, Pedersen JS (2010) Large effective population size and temporal genetic stability in Atlantic cod (Gadus morhua) in the southern Gulf of St. Lawrence. Can J Fish Aquat Sci 67:1585–1595. doi:10.1139/F10-084

    Article  Google Scholar 

  • Titov OV (2002) Conclusions. In: Titov OV (ed) Relict Lake Mogilnoe (studies of 1997–2000). PINRO, Murmank, pp 141–156 (in Russian)

    Google Scholar 

  • Traill LW, Brook BW, Frankham RR, Bradshaw CJA (2010) Pragmatic population viability targets in a rapidly changing world. Biol Conserv 143:28–34. doi:10.1016/j.biocon.2009.09.001

    Article  Google Scholar 

  • Tseeb RYA, Astafeva AV (1975) Morphology of Kildin cod. In: Gurevich VI, Zeeb RYA (eds) Relict Lake Mogilnoe. Nauka, Leningrad, pp 259–276 (in Russian)

    Google Scholar 

  • Tseeb RY, Pozdnyakov YF (1975) Reproduction. In: Gurevich VI, Zeeb RYA (eds) Relict Lake Mogilnoe. Nauka, Leningrad, pp 227–247 (in Russian)

    Google Scholar 

  • Vasemagi A, Primmer CR (2005) Challenges for identifying functionally important genetic variation: the promise of combining complementary research strategies. Mol Ecol 14:3623–3642. doi:10.1111/j.1365-294X.2005.02690.x

    Article  CAS  Google Scholar 

  • Vitalis R (2012) DetSel: an R-package to detect marker loci responding to selection. Methods Mol Biol 888:277–293. doi:10.1007/978-1-61779-870-2_16

    Article  Google Scholar 

  • Vitalis R, Dawson K, Boursot P (2001) Interpretation of variation across marker loci as evidence of selection. Genetics 158:1811–1823. doi:10.1093/jhered/esg083

    CAS  Google Scholar 

  • Wang J (2009) A new method for estimating effective population sizes from a single sample of multilocus genotypes. Mol Ecol 18:2148–2164. doi:10.1111/j.1365-294X.2009.04175.x

    Article  Google Scholar 

  • Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756. doi:10.1111/j.1755-0998.2007.02061.x

    Article  Google Scholar 

  • Ward RD, Woodwark M, Skibinski DOF (1994) A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes. J Fish Biol 44:213–232. doi:10.1111/j.1095-8649.1994.tb01200.x

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370. doi:10.2307/2408641

    Article  Google Scholar 

  • Wesmajervi M-S, Tafese T, Stenvik J, Fjalestad K-T, Damsgard B, Delghandi M (2007) Eight new microsatellite markers in Atlantic cod (Gadus morhua L.) derived from an enriched genomic library. Mol Ecol Notes 7:138–140. doi:10.1111/j.1471-8286.2006.01555.x

    Article  CAS  Google Scholar 

  • Whiteley AR, Hastings K, Wenburg JK, Frissell CA, Martin JC, Allendorf FW (2010) Genetic variation and effective population size in isolated populations of coastal cutthroat trout. Conserv Genet 11:1929–1943. doi:10.1007/s10592-010-0083-y

    Article  Google Scholar 

  • Willi Y, Van Buskirk J, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Annu Rev Ecol Evol Syst 37:433–458. doi:10.1146/annurev.ecolsys.37.091305

    Article  Google Scholar 

Download references

Acknowledgments

We extend our sincere gratitude to the following persons and organizations: E. Movchan and other members of the Saint-Petersburg State University (SPbSU) Barents Sea expeditions for their assistance in the field; N. Lentsman for English language editing of the manuscript; T. Moum, P.R. England, D. Roy and anonymous reviewers for helpful comments; Centre for molecular and cell technologies of SPbSU for technical help. This work was funded by SPbSU (Grant no. 1.38.253.2014) and Russian Foundation for Basic Research (Grant nos. 07-04-01734-a and 10-04-90836).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Strelkov.

Additional information

Communicated by M. Taylor.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 514 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, V., Fokin, M., Mugue, N. et al. Long-term persistence and evolutionary divergence of a marine fish population with a very small effective population size (Kildin cod Gadus morhua kildinensis). Mar Biol 162, 979–992 (2015). https://doi.org/10.1007/s00227-015-2642-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-015-2642-8

Keywords

Navigation