Skip to main content

Advertisement

Log in

Contrasting pattern of mitochondrial population diversity between an estuarine bivalve, the Kumamoto oyster Crassostrea sikamea, and the closely related Pacific oyster C. gigas

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The Kumamoto oyster (Crassostrea sikamea) shows a spatially restricted distribution, favoring estuarine tideland environment. On the other hand, the Pacific oyster (C. gigas) has a broader range of habitat. The present study compared the mitochondrial population structure between the two closely related species. For accurate species identification of oysters sampled from Japanese and East Asian continental coasts, we performed sequencing analysis of the mitochondrial DNA (mtDNA) and PCR-RFLP assay of the first internal transcribed spacer of nuclear rRNA genes. Then, we estimated the extent of population differentiation within each of C. sikamea and C. gigas based on the mtDNA data. Few haplotypes were shared among the sites of sampling in C. sikamea, which contrasted with an extensive haplotype sharing among C. gigas samples. We discuss the mechanisms of elevated population differentiation observed in C. sikamea in light of the ecology and the ancient ocean geography around the present-day habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akashi H (1995) Inferring weak selection from patterns of polymorphism and divergence at “silent” sites in Drosophila DNA. Genetics 139:1067–1076

    CAS  Google Scholar 

  • Amemiya I (1928) Ecological studies of Japanese oysters, with special reference to the salinity of their habitats. J Coll Agric Univ Tokyo 9:333–382

    Google Scholar 

  • An HK, Jee YJ, Park DW, Ryu HY, Min KS (2000) Genetic variation in populations of the Pacific oyster (Crassostrea gigas), based on the mitochondrial COI gene sequence. Korean J Genet 22:249–255

    CAS  Google Scholar 

  • Andolfatto P (2005) Adaptive evolution of non-coding DNA in Drosophila. Nature 437:1149–1152

    Article  CAS  Google Scholar 

  • Aris-Brosou S, Excoffier L (1996) The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism. Mol Biol Evol 13:494–506

    Article  CAS  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigell JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522

    Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  Google Scholar 

  • Banks MA, Hedgecock D (1993) Discrimination between closely related Pacific oyster species (Crassostrea) via mitochondrial DNA sequences coding for large subunit rRNA. Mol Mar Biol Biotechnol 2:129–136

    CAS  Google Scholar 

  • Banks MA, McGoldrick DJ, Borgeson W, Hedgecock D (1994) Gametic incompatibility and genetic divergence of Pacific and Kumamoto oysters, Crassostrea gigas and C. sikamea. Mar Biol 121:127–135

    Article  Google Scholar 

  • Bazin E, Glémin S, Galtier N (2006) Population size does not influence mitochondrial genetic diversity in animals. Science 312:570–572

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Bermingham E, Moritz C (1998) Comparative phylogeography: concepts and applications. Mol Ecol 7:367–369

    Article  Google Scholar 

  • Bernatchez L, Wilson CC (1998) Comparative phylogeography of Nearctic and Palearctic fishes. Mol Ecol 7:431–452

    Article  Google Scholar 

  • Bertness MD, Gaines SD (1993) Larval dispersal and local adaptation in acorn barnacles. Evolution 47:316–320

    Article  Google Scholar 

  • Buroker NE, Hershberger WK, Chew KK (1979) Population genetics of the family Ostreidae. I. Intraspecific studies of Crassostrea gigas and Saccostrea commercialis. Mar Biol 54:157–169

    Article  Google Scholar 

  • Camara MD, Davis JP, Sekino M, Hedgecock D, Li G, Langdon CJ, Evans S (2008) The Kumamoto oyster Crassostrea sikamea is neither rare nor threatened by hybridization in the northern Ariake Sea, Japan. J Shellfish Res 27:313–322

    Article  Google Scholar 

  • Carlini DB, Stephan W (2003) In vivo introduction of unpreferred synonymous codons into the Drosophila Adh gene results in reduced levels of ADH protein. Genetics 163:239–243

    CAS  Google Scholar 

  • Chen Z, Song B, Wang Z, Cai Y (2000) Late Quaternary evolution of the sub-aqueous Yangtze Delta, China: sedimentation, stratigraphy, palynology, and deformation. Mar Geol 162:423–441

    Article  Google Scholar 

  • Chew KK (1990) Global bivalve shellfish introductions. World Aquac 21:9–22

    Google Scholar 

  • Choi KS (2008) Oyster capture-based aquaculture in the Republic of Korea. In: FAO Fisheries Technical Paper, vol 508, pp 271–286

  • Cordes JF, Xiao J, Reece KS (2008) Discrimination of nine Crassostrea oyster species based upon restriction fragment-length polymorphism analysis of nuclear and mitochondrial DNA markers. J Shellfish Res 27:1155–1161

    Article  Google Scholar 

  • Dowling DK, Friberg U, Lindell J (2008) Evolutionary implications of non-neutral mitochondrial genetic variation. Trends Ecol Evol 23:546–554

    Article  Google Scholar 

  • Egea R, Casillas S, Barbadilla A (2008) Standard and generalized McDonald-Kreitman test: a website to detect selection by comparing different classes of DNA sites. Nucleic Acids Res 36: W157–W162 (web server issue)

    Google Scholar 

  • Emery KO, Niino H, Sullivan B (1971) Post-Pleistocene levels of East China Sea. In: Trekian KK (ed) Late Cenozoic glacial ages. Yale University Press, New Heaven, pp 381–390

    Google Scholar 

  • Ernande B, Clobert J, Mccombie H, Boudry P (2003) Genetic polymorphism and trade-off in the early life-history strategy of the Pacific oyster, Crassostrea gigas (Thunberg, 1795): a quantitative genetic study. J Evol Biol 16:399–414

    Article  CAS  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  Google Scholar 

  • Fan D, Li C (2008) Timing of the Yangtze initiation draining the Tibetan Plateau throughout to the East China Sea: a review. Front Earth Sci China 2:302–313

    Article  Google Scholar 

  • FAO (2005) Cultured Aquatic Species Information Programme (Crassostrea gigas). In: Helm MM (ed) FAO Fisheries and Aquaculture Department (online), Rome http://www.fao.org/fishery/culturedspecies/Crassostrea_gigas/en

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrate. Mol Mar Biol Biotechnol 3:294–299

    CAS  Google Scholar 

  • Fu Y-X (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    CAS  Google Scholar 

  • Fu Y-X, Li W-H (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    CAS  Google Scholar 

  • Grant WS, Bowen BW (1998) Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J Hered 89:415–426

    Article  Google Scholar 

  • Guo X, Ford SE, Zhang F (1999) Molluscan aquaculture in China. J Shellfish Res 18:19–31

    Google Scholar 

  • Heads M (2005) Towards a panbiogeography of the seas. Biol J Linn Soc 84:675–723

    Article  Google Scholar 

  • Hedgecock D (1994) Does variance in reproductive success limit effective population size of marine organisms? In: Beaumont A (ed) Genetics and evolution of aquaculture organisms. Chapman & Hall, London, pp 122–134

    Google Scholar 

  • Hedgecock D, Pudovkin AI (2011) Sweepstakes reproductive success in highly fecund marine fish and shellfish: a review and commentary. Bull Mar Sci 87:971–1002

    Article  Google Scholar 

  • Hedgecock D, Li G, Banks MA, Kain Z (1999) Occurrence of the Kumamoto oyster Crassostrea sikamea in the Ariake Sea, Japan. Mar Biol 133:65–68

    Article  Google Scholar 

  • Hedrick PW (2000) Genetics of populations. Jones and Bartlett Publishers, Sudbury

    Google Scholar 

  • Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  CAS  Google Scholar 

  • Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond B 359:183–195

    Article  CAS  Google Scholar 

  • Hong J-S, Sekino M, Sato S (2012) Molecular species diagnosis confirmed the occurrence of Kumamoto oyster Crassostrea sikamea in Korean waters. Fish Sci 78:259–267

    Article  CAS  Google Scholar 

  • Hori K, Saito Y, Zhao Q, Wang P (2002) Architecture and evolution of the tide-dominated Changjiang (Yangtze) River delta, China. Sediment Geol 146:249–264

    Article  Google Scholar 

  • Hughes AL (2007) Looking for Darwin in all the wrong places: the misguided quest for positive selection at the nucleotide sequence level. Heredity 99:364–373

    Article  CAS  Google Scholar 

  • Hughes AL (2008) The origin of adaptive phenotypes. Proc Natl Acad Sci USA 105:13193–13194

    Article  CAS  Google Scholar 

  • Ijiri A, Wang L, Oba T, Kawahata H, Huang C-Y, Huang C-Y (2005) Paleoenvironmental changes in the northern area of the East China Sea during the past 42,000 years. Palaeogeogr Palaeoclimateol Palaeoecol 219:239–261

    Article  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. Academic Press, New York, pp 21–132

  • Lam K, Morton B (2004) The oysters of Hong Kong (Bivalvia: Ostreidae and Gryphaeidae). Raffles B Zool 52:11–28

    Google Scholar 

  • Lambeck K, Esat TM, Potter E-K (2002) Links between climate and sea levels for the past three million years. Nature 419:199–206

    Article  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  Google Scholar 

  • Liu K-B, Sun S, Jiang X (1992) Environmental change in the Yangtze River delta since 12,000 years BP. Quaternary Res 38:32–45

    Article  Google Scholar 

  • Liu J-X, Gao T-X, Yokogawa K, Zhang Y-P (2006a) Differential population structuring and demographic history of two closely related fish species, Japanese Sea bass (Lateolabrax japonicus) and spotted sea bass (Lateolabrax maculatus) in Northwestern Pacific. Mol Phyl Evol 39:799–811

    Article  CAS  Google Scholar 

  • Liu J-X, Gao T-X, Yokogawa K, Zhang Y-P (2006b) Late Pleistocene divergence and subsequent population expansion of two closely related fish species, Japanese anchovy (Engraulis japonicus) and Australian anchovy (Engraulis austrails). Mol Phyl Evol 40:712–723

    Article  CAS  Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654

    Article  CAS  Google Scholar 

  • Meiklejohn CD, Montooth KL, Rand DM (2007) Positive and negative selection on the mitochondrial genome. Trends Genet 23:259–263

    Article  CAS  Google Scholar 

  • Milbury CA, Gaffney PM (2005) Complete mitochondrial DNA sequence of the eastern oyster Crassostrea virginica. Mar Biotechnol 7:697–712

    Article  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Nielsen R (2001) Statistical tests of selective neutrality in the age of genomics. Heredity 86:641–647

    Article  CAS  Google Scholar 

  • Numachi K (1971) Biological research on the oyster. In: Imai T (ed) Aquaculture in shallow seas: progress in shallow sea culture. Koseisha Koseikaku, Tokyo, pp 52–105 (in Japanese)

    Google Scholar 

  • Ó Foighil D, Gaffney PM, Wilbur AE, Hilbish TJ (1998) Mitochondrial cytochrome oxidase I gene sequences support an Asian origin for the Portuguese oyster Crassostrea angulata. Mar Biol 131:497–503

    Article  Google Scholar 

  • Ohta T (1972a) Evolutionary rate of cistrons and DNA divergence. J Mol Evol 1:150–157

    Article  CAS  Google Scholar 

  • Ohta T (1972b) Population size and rate of evolution. J Mol Evol 1:305–314

    Article  CAS  Google Scholar 

  • Ohta T (1973) Slightly deleterious mutant substitutions in evolution. Nature 246:96–98

    Article  CAS  Google Scholar 

  • Oizumi S, Ito S, Koganezawa A, Sakai S, Sato R, Kanno H (1971) Techniques of oyster culture. In: Imai T (ed) Aquaculture in shallow seas: progress in shallow sea culture. Koseisha Koseikaku, Tokyo, pp 149–185 (in Japanese)

    Google Scholar 

  • Oliveira DCSG, Raychoudhury R, Lavrov DV, Werren JH (2008) Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp Nasonia (Hymenoptera: Pteromalidae). Mol Biol Evol 25:2167–2180

    Article  CAS  Google Scholar 

  • Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855

    Article  Google Scholar 

  • Polzin T, Daneschmand SV (2003) On Steiner trees and minimum spanning trees in hypergraphs. Oper Res Lett 31:12–20

    Article  Google Scholar 

  • Posada D, Crandall KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16:37–45

    Article  Google Scholar 

  • Provan J, Bennett KD (2008) Phylogeographic insights into cryptic glacial refugia. Trends Ecol Evol 23:564–571

    Article  Google Scholar 

  • Rand DM (2001) The units of selection on mitochondrial DNA. Annu Rev Ecol Syst 32:415–448

    Article  Google Scholar 

  • Rand DM, Kann LM (1996) Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from Drosophila, mice, and humans. Mol Biol Evol 13:735–748

    Article  CAS  Google Scholar 

  • Rand DM, Haney RA, Fry AJ (2004) Cytonuclear coevolution: the genomics of cooperation. Trends Ecol Evol 19:645–653

    Article  Google Scholar 

  • Reece KS, Cordes JF, Stubbs JB, Hudson KL, Francis EA (2008) Molecular phylogenies help resolve taxonomic confusion with Asian Crassostrea oyster species. Mar Biol 153:709–721

    Article  Google Scholar 

  • Richardson NJ, Densmore AL, Seward D, Wipf M, Yong L (2010) Did incision of the three Gorges begin in the Eocene? Geology 38:551–554

    Article  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Saitoh K, Chen WJ (2008) Reducing cloning artifacts for recovery of allelic sequences by T7 endonuclease I cleavage and single re-extension of PCR products—a benchmark. Gene 423:92–95

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Manitaris T (1989) Molecular cloning, 2nd edn. Cold Spring Harbor Laboratory Press, Plainview

    Google Scholar 

  • Sargsyan O, Wakeley J (2008) A coalescent process with simultaneous multiple mergers for approximating the gene genealogies of many marine organisms. Theor Pop Biol 74:104–114

    Article  Google Scholar 

  • Sato S (2000) Bivalves: focusing on the species distributed in Isahaya Bay. In: Sato M (ed) Life in Ariake Sea: biodiversity in tidal flats and estuaries. Kaiyusha, Tokyo, pp 150–183 (in Japanese)

    Google Scholar 

  • Sato M, Takita T (2000) Biota and environment of Ariake Sea. In: Sato M (ed) Life in Ariake Sea: biodiversity in tidal flats and estuaries. Kaiyusha, Tokyo, pp 10–36 (in Japanese)

    Google Scholar 

  • Sekino M (2009) In search of the Kumamoto oyster Crassostrea sikamea (Amemiya, 1928) based on molecular markers: is the natural resource at stake? Fish Sci 75:319–331

    Article  Google Scholar 

  • Sekino M, Kobayashi T, Hara M (2006) Segregation and linkage analysis of 75 novel microsatellite DNA markers in pair crosses of Japanese abalone (Haliotis discus hannai) using the 5’-tailed primer method. Mar Biotechnol 8:453–466

    Article  CAS  Google Scholar 

  • Selkoe KA, Toonen RJ (2011) Marine connectivity: a new look at pelagic larval duration and genetic metrics of dispersal. Mar Ecol Prog Ser 436:291–305

    Article  Google Scholar 

  • Shimoyama S (2000) Geographic history of the Ariake Sea and development of Ariake-endemic species. In: Sato M (ed) Life in Ariake Sea: biodiversity in tidal flats and estuaries. Kaiyusha, Tokyo, pp 37–48 (in Japanese)

    Google Scholar 

  • Simonsen KL, Churchill GA, Aquadro CF (1995) Properties of statistical tests of neutrality for DNA polymorphism data. Genetics 141:413–429

    CAS  Google Scholar 

  • Stewart JR, Lister AM (2001) Cryptic northern refugia and the origins of the modern biota. Trends Ecol Evol 16:608–613

    Article  Google Scholar 

  • Sugawara Y, Koganezawa A (1994) Advances in aquaculture of Pacific oyster, Japanese scallop, and Ezo abalones: Oyster (Crassostrea gigas). In: Nomura M (ed) Oyster, scallop and abalone: advances in culture of molluscs and related fields of research. Koseisha Koseikaku, Tokyo, pp 1–17 (in Japanese)

    Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • Tanaka M (2007) Relict estuarine ecosystem isolated from the continental coastal waters. Aquabiology 29:3–9 (in Japanese with English abstract)

    Google Scholar 

  • Thompson JD, Higgins DJ, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Uehara K, Saito Y (2003) Late Quaternary evolution of the Yellow/East China Sea tidal regime and its impacts on sediments dispersal and seafloor morphology. Sediment Geol 162:25–38

    Article  Google Scholar 

  • Uehara K, Saito Y, Hori K (2002) Paleotidal regime in the Changjiang (Yantze) Estuary, the East China Sea, and the Yellow Sea at 6 ka and 10 ka estimated from a numerical model. Mar Geol 183:179–192

    Article  Google Scholar 

  • Usuki H (2002) Evaluation of characteristics and preservation of Pacific oyster, Crassostrea gigas, in view of the genetic resources. Bull Fish Res Agency 4:40–104 (in Japanese with English abstract)

    Google Scholar 

  • Wang P (1999) Response of Western Pacific marginal seas to glacial cycles: paleoceanographic and sedimentological features. Mar Geol 156:5–39

    Article  Google Scholar 

  • Wang Y, Aubrey DG (1987) The characteristics of the China coastline. Cont Shelf Res 7:329–349

    Article  Google Scholar 

  • Wang J, Wang P (1980) Relationship between sea-level changes and climatic fluctuations in East China Sea since late Pleistocene. Acta Geogr Sin 35:299–312 (in Chinese with English abstract)

    Google Scholar 

  • Wang H, Zhang G, Liu X, Guo X (2008) Classification of common oysters from north China. J Shellfish Res 27:495–503

    Article  CAS  Google Scholar 

  • Wu X, Xu X, Yu Z, Wei Z, Xia J (2010) Comparison of seven Crassostrea mitogenomes and phylogenetic analysis. Mol Phyl Evol 57:448–454

    Article  CAS  Google Scholar 

  • Xiao S, Li A, Jiang F, Li T, Wan S, Huang P (2004) The history of the Yangtze River entering sea since the Last Glacial Maxima: a review and look forward. J Coast Res 20:599–604

    Article  Google Scholar 

  • Xu X, Oda M (1999) Surface-water evolution of the eastern East China Sea during the last 36,000 years. Mar Geol 156:285–304

    Article  CAS  Google Scholar 

  • Yu H, Li Q (2012) Complete mitochondrial DNA sequence of Crassostrea nippona: comparative and phylogenomic studies on seven commercial Crassostrea species. Mol Biol Rep 39:999–1009

    Article  CAS  Google Scholar 

  • Zhao B, Guo H, Yan Y, Wang Q, Li B (2008) A simple waterline approach for tidelands using multi-temporal satellite images: a case study in the Yangtze Delta. Estuar Coast Shelf Sci 77:134–142

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to professor D. Hedgecock, University of Southern California, for kindly reading the earlier draft of the manuscript and providing many insightful comments. Many constructive suggestions from two anonymous reviewers and handling editor helped improve the manuscript. We also thank Mr. K. Kitahara of Seikai Yoshoku Giken and Dr. R. Fuseya of National Research Institute of Fisheries Engineering, Fisheries Research Agency of Japan, for their assistance to MS’s expedition to Ariake Sea and Omura Bay for sample collection. QL’s graduate students helped MS to collect oysters in Qingdao.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Sekino.

Additional information

Communicated by T. Reusch.

Appendices

Appendix 1

See Table 6.

Table 6 DDBJ/EMBL/GenBank accession numbers for the nucleotide sequences of studied Crassostrea oysters

Appendix 2

See Table 7.

Table 7 List of codons with inter-species fixed replacement substitutions and intra-species replacement polymorphisms

Appendix 3

See Table 8.

Table 8 Pairwise F ST estimated for sample combinations within Crassostrea sikamea and C. gigas

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekino, M., Sato, S., Hong, JS. et al. Contrasting pattern of mitochondrial population diversity between an estuarine bivalve, the Kumamoto oyster Crassostrea sikamea, and the closely related Pacific oyster C. gigas . Mar Biol 159, 2757–2776 (2012). https://doi.org/10.1007/s00227-012-2037-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-2037-z

Keywords

Navigation