Skip to main content
Log in

Dynamic stoichiometric response to food quality fluctuations in the heterotrophic dinoflagellate Oxyrrhis marina

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

With respect to nutrients, plants are rather non-homoeostatic while most metazoans have much more confined ranges of nutrient ratios. It was recently highlighted that the homoeostatic ability of microzooplankters lies in between these two extremes. Nevertheless, we know very little on the dynamics of stoichiometric changes. Hence, we investigated how the stoichiometry of the heterotrophic dinoflagellate Oxyrrhis marina is affected (1) during a starvation period and (2) when fed nutrient deplete Rhodomonas salina after having been pre-conditioned on nutrient replete algae and vice versa. We observed that the dinoflagellate was able to maintain its N:P ratio constant over 78 h of starvation. We inferred that under starvation, nitrogen-limited O. marina mainly used fat as energy source while nitrogen-rich individuals also used proteins as fuel in cellular respiration. Further, we showed that O. marina presents resistance to nutrient limitation, with stronger regulation against P-limitation than against N-limitation. This resilience in microzooplankton stoichiometry following food quality stress would have great implications for both top-down (nutrient remineralisation) and bottom-up controls (quality as food).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen T, Hessen DO (1991) Carbon, nitrogen, and phosphorus content of freshwater zooplankton. Limnol Oceanogr 36:807–814

    Article  CAS  Google Scholar 

  • Bossuyt BTA, Janssen CR (2005) Copper regulation and homeostasis of Daphnia magna and Pseudokirchneriella subcapitata: influence of acclimation. Environ Pollut 136:135–144

    Article  CAS  Google Scholar 

  • Cushing DH (1989) A difference in structure between ecosystems in strongly stratified waters and in those that are only weakly stratified. J Plankton Res 11:1–13

    Article  Google Scholar 

  • DeMott WR, Pape BJ (2005) Stoichiometry in an ecological context: testing for links between Daphnia P-content, growth rate and habitat preference. Oecologia 142:20–27

    Article  Google Scholar 

  • Droop MR (1973) Nutrient limitation in Osmotrophic Protista. Am Zool 13:209–214

    Google Scholar 

  • Elser JJ, Goff NC, MacKay NA, Amand ALS, Elser MM, Carpenter SR (1987) Species-specific algal responses to zooplankton: experimental and field observations in three nutrient-limited lakes. J Plankton Res 9:699–717

    Article  Google Scholar 

  • Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH (1996) Organism size, life history, and N:P stoichiometry. Bioscience 46:674–684

    Article  Google Scholar 

  • Flynn KJ, Davidson K (1993) Predator-prey interactions between Isochrysis galbana and Oxyrrhis marina. II. Release of non-protein amines and faeces during predation of Isochrysis. J Plankton Res 15:893–905

    Article  CAS  Google Scholar 

  • Gaines G, Taylor FJR (1984) Extracellular digestion in marine dinoflagellates. J Plankton Res 6:1057–1061

    Article  Google Scholar 

  • Gasparini S, Daro MH, Antajan E, Tackx M, Rousseau V, Parent JY, Lancelot C (2000) Mesozooplankton grazing during the Phaeocystis globosa bloom in the southern bight of the North Sea. J Sea Res 43:345–356

    Article  Google Scholar 

  • Gatti S, Brey T, Müller WEG, Heilmayer O, Holst G (2002) Oxygen microoptodes: a new tool for oxygen measurements in aquatic animal ecology. Mar Biol 140:1075–1085

    Article  Google Scholar 

  • Grasshoff K, Ehrhardt M, Kremling K (1999) Methods of seawater analysis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Grover JP, Chrzanowski TH (2006) Stoichiometry and growth kinetics in the “smallest zooplankton”—phagotrophic flagellates. Arch Hydrobiol 167:467–487

    Article  CAS  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J Microbiol 8:229–239

    Article  CAS  Google Scholar 

  • Hantzsche FM, Boersma M (2010) Dietary-induced responses in the phagotrophic flagellate Oxyrrhis marina. Mar Biol 157:1641–1651

    Article  CAS  Google Scholar 

  • Hessen DO (1990) Carbon, nitrogen and phosphorus status in Daphnia at varying food conditions. J Plankton Res 12:1239–1249

    Article  CAS  Google Scholar 

  • Hillebrand H, Sommer U (1999) The Nutrient Stoichiometry of Benthic Microalgal Growth: redfield Proportions are Optimal. Limnol Oceanogr 44:440–446

    Article  Google Scholar 

  • Jeong HJ, Seong KA, Yoo YD, Kim TH, Kang NS, Kim S, Park JY, Kim JS, Kim GH, Song JY (2008) Feeding and grazing impact by small marine heterotrophic dinoflagellates on heterotrophic bacteria. J Eukaryotic Microbiol 55:271–288

    Article  Google Scholar 

  • Johansson M, Gorokhova E, Larsson U (2004) Annual variability in ciliate community structure, potential prey and predators in the open northern Baltic Sea proper. J Plankton Res 26:67–80

    Article  Google Scholar 

  • Kimmance SA, Atkinson D, Montagnes DJS (2006) Do temperature–food interactions matter? Responses of production and its components in the model heterotrophic flagellate Oxyrrhis marina. Aquat Microb Ecol 42:63–73

    Article  Google Scholar 

  • Klausmeier CA, Litchman E, Daufresne T, Levin SA (2004) Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429:171–174

    Article  CAS  Google Scholar 

  • Klein Breteler WCM, Schogt N, Baas M, Schouten S, Kraay GW (1999) Trophic upgrading of food quality by protozoans enhancing copepod growth: role of essential lipids. Mar Biol 135:191–198

    Article  Google Scholar 

  • Kleppel GS (1993) On the diets of calanoid copepods. Mar Ecol Prog Ser 99:1–2

    Article  Google Scholar 

  • Landry MR, Calbet A (2004) Significance of predation by protists in aquatic microbial food webs. J Mar Sci 61:501–507

    Google Scholar 

  • Laspoumaderes C, Modenutti B, Balseiro E (2010) Herbivory versus omnivory: linking homeostasis and elemental imbalance in copepod development. J Plankton Res 32:1573–1582

    Article  Google Scholar 

  • Levinsen H, Turner JT, Nielsen TG, Hansen BW (2000) On the trophic coupling between protists and copepods in arctic marine ecosystems. Mar Ecol Prog Ser 204:65–77

    Article  Google Scholar 

  • Löder MGJ, Meunier C, Wiltshire KH, Boersma M, Aberle N (2011) The role of ciliates, heterotrophic dinoflagellates and copepods in structuring spring plankton communities at Helgoland Roads, North Sea. Mar Biol 158:1551–1580

    Article  Google Scholar 

  • Lowe CD, Martin LE, Roberts EC (2010) Collection, isolation, and culturing strategies for the maintenance of Oxyrrhis marina. J Plankton Res 33:569–578

    Article  Google Scholar 

  • Lusk G (1924) Animal calorimetry. J Biol Chem 59:41–42

    CAS  Google Scholar 

  • Malzahn AM, Hantzsche F, Schoo KL, Boersma M, Aberle N (2010) Differential effects of nutrient-limited primary production on primary, secondary or tertiary consumers. Oecologia 162:35–48

    Article  Google Scholar 

  • Martel CM (2010) Regenerated extracellular NH4 + affects the motile chemosensory responses of batchcultured Oxyrrhis marina. Braz J Microbiol 41:321–328

    Article  CAS  Google Scholar 

  • Meunier CL, Hantzsche FM, Cunha-Dupont AÖ, Haafke J, Oppermann B, Malzahn AM, Boersma M (2012) Intraspecific selectivity, compensatory feeding, and flexible homeostasis in the phagotrophic flagellate Oxyrrhis marina: three ways to handle food quality fluctuations. Hydrobiologia 680:53–62

    Article  CAS  Google Scholar 

  • Persson J, Fink P, Goto A, Hood JM, Jonas J, Kato S (2010) To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos 119:741–751

    Article  CAS  Google Scholar 

  • Quigg A, Finkel ZV, Irwin AJ, Rosenthal Y, Ho T-Y, Reinfelder JR, Schofield O, Morel FMM, Falkowski PG (2003) The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425:291–294

    Article  CAS  Google Scholar 

  • Reche I, Carrillo P, Cruz-Pizarro L (1997) Influence of metazooplankton on interactions of bacteria and phytoplankton in an oligotrophic lake. J Plankton Res 19:631–646

    Article  Google Scholar 

  • Roberts EC, Wootton EC, Davidson K, Jeong HJ, Lowe CD, Montagnes DJS (2011) Feeding in the dinoflagellate Oxyrrhis marina: linking behaviour with mechanisms. J Plankton Res 33:603–614

    Article  Google Scholar 

  • Sakami W, Harrington H (1963) Amino acid metabolism. Annu Rev Biochem 32:355–398

    Article  CAS  Google Scholar 

  • Schumann R, Munzert B, Wünsch J-U, Spittler H-P (1994) The feeding biology of Oxyrrhis marina Dujardin (Flagellata). Limnologica 24:29–34

    Google Scholar 

  • Sherr EB, Sherr BF (2002) Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek 81:293–308

    Article  CAS  Google Scholar 

  • Sommer U (1984) The paradox of the plankton: fluctuations of phosphorus availability maintain diversity of phytoplankton in flow-through cultures. Limnol Oceanogr 29:633–636

    Article  Google Scholar 

  • Sommer U (1985) Comparison between steady state and non-steady state competition: experiments with natural phytoplankton. Limnol Oceanogr 30:335–346

    Article  CAS  Google Scholar 

  • Sommer U, Sommer F (2006) Cladocerans versus copepods: the cause of contrasting top–down controls on freshwater and marine phytoplankton. Oecologia 147:183–194

    Article  Google Scholar 

  • Sommer U, Hansen T, Blum O, Holzner N, Vadstein O, Stibor H (2005) Copepod and microzooplankton grazing in mesocosms fertilised with different Si:N ratios: no overlap between food spectra and Si:N influence on zooplankton trophic level. Oecologia 142:274–283

    Article  Google Scholar 

  • Sterner RW (1990) The ratio of nitrogen to phosphorus resupplied by herbivores: zooplankton and the algal competitive arena. Am Nat 136:209–229

    Article  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton university press, Princeton and Oxford

    Google Scholar 

  • Sterner RW, Schwalbach MS (2001) Diel Integration of food quality by Daphnia: luxury consumption by a freshwater planktonic herbivore. Limnol Oceanogr 46:410–416

    Article  Google Scholar 

  • Tian X, Qin JG (2004) Effects of previous ration restriction on compensatory growth in barramundi Lates calcarifer. Aquaculture 235:273–283

    Article  Google Scholar 

  • Urzúa Á, Anger K (2011) Larval biomass and chemical composition at hatching in two geographically isolated clades of the shrimp Macrobrachium amazonicum: intra- or interspecific variation? Invertebr Reprod Dev 55:236–246

    Article  Google Scholar 

  • Weir JBDV (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109:1–9

    Google Scholar 

  • Wiadnyana N, Rassoulzadegan F (1989) Selective feeding of Acartia clausi and Centropages typicus on microzooplankton. Mar Ecol Prog Ser 53:37–45

    Article  Google Scholar 

Download references

Acknowledgments

This study is a part of the PhD study conducted by C.L.M. at the Biologische Anstalt Helgoland, Alfred-Wegener-Institut Bremerhaven, Germany, financed by the Deutsche Forschungsgemeinschaft (DFG, grant MA 4501/1-1) and complies with current German laws and regulations on animal studies. We thank Stefanie Schnell for her help measuring respiration rates of O. marina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Léo Meunier.

Additional information

Communicated by U. Sommer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meunier, C.L., Haafke, J., Oppermann, B. et al. Dynamic stoichiometric response to food quality fluctuations in the heterotrophic dinoflagellate Oxyrrhis marina . Mar Biol 159, 2241–2248 (2012). https://doi.org/10.1007/s00227-012-2009-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-2009-3

Keywords

Navigation