Skip to main content
Log in

Determination of the surface density of polyethylene glycol on gold nanoparticles by use of microscale thermogravimetric analysis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The widespread integration of nanoparticle technologies into biomedicine will depend on the ability to repeatedly create particles with well-defined properties and predictable behaviors. For this to happen, fast, reliable, inexpensive, and widely available techniques to characterize nanomaterials are needed. Characterization of the surface molecules is particularly important since the surface, including the surface molecule density, plays a dominant role in determining how nanoparticles interact with their surroundings. Here, 10 and 30 nm gold nanoparticle NIST Standard Reference Materials were functionalized with fluorescently labeled polyethylene glycol (PEG) with either thiolate or lipoic acid anchoring groups to evaluate analytical techniques for determining surface coverage. The coating of the nanoparticles was confirmed with dynamic light scattering, microscale thermogravimetric analysis (μ-TGA), and ultraviolet–visible (UV–vis) spectroscopy. A UV–vis method for determining gold nanoparticle concentrations that takes into account spectral broadening upon functionalization was developed. The amount of bound PEG was quantified with μ-TGA, a technique analogous to thermogravimetric analysis that uses quartz crystal microbalances, and fluorescence spectroscopy of displaced ligands. It is shown that μ-TGA is a convenient technique for the quantification of ligands bound to inorganic particles while sacrificing a minimal amount of sample, and the treatment of the functionalized nanoparticle dispersions with dithiothreitol may be insufficient to achieve complete displacement of the surface ligands for quantification by fluorescence measurements. The μ-TGA and fluorescence results were used to determine ligand footprint sizes—average areas occupied by each ligand on the particles’ surface. The lipoic acid bound ligands had footprint sizes of 0.21 and 0.25 nm2 on 10 and 30 nm particles, respectively while the thiolate ligands had footprint sizes of 0.085 and 0.18 nm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cheng MM, Cuda G, Bunimovich YL, Gaspari M, Heath JR, Hill HD, Mirkin CA, Nijdam AJ, Terracciano R, Thundat T, Ferrari M (2006) Curr Opin Chem Biol 10:11–19

    Article  CAS  Google Scholar 

  2. Petros RA, DeSimone JM (2010) Nat Rev Drug Discov 9:615–627

    Article  CAS  Google Scholar 

  3. Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman KD, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere NA, Warheit DB, Yang H (2005) Part Fibre Toxicol 2:1–35

    Article  Google Scholar 

  4. Boverhof DR, David RM (2009) Anal Bioanal Chem 396:953–961

    Article  Google Scholar 

  5. Richman EK, Hutchison JE (2009) ACS Nano 3:2441–2446

    Article  CAS  Google Scholar 

  6. Grainger DW, Castner DG (2008) Adv Mater 20:867–877

    Article  CAS  Google Scholar 

  7. Hall JB, Dobrovolskaia MA, Patri AK, McNeil SE (2007) Nanomed 2:789–803

    Article  CAS  Google Scholar 

  8. Mansfield E, Tyner KM, Poling CM, Blacklock JL (2014) Anal Chem 86:1478–1484

    Article  CAS  Google Scholar 

  9. Jones CF, Grainger DW (2009) Adv Drug Deliv Rev 61:438–456

    Article  CAS  Google Scholar 

  10. Kroll A, Pillukat MH, Hahn D, Schnekenburger J (2009) Eur J Pharm Biopharm 72:370–377

    Article  CAS  Google Scholar 

  11. Shaw SY, Westly EC, Pittet MJ, Subramanian A, Schreiber SL (2008) Weissleder. R Proc Natl Acad Sci U S A 105:7387

    Article  CAS  Google Scholar 

  12. Fischer HC, Chan WC (2007) Curr Opin Biotechnol 18:565–571

    Article  CAS  Google Scholar 

  13. Linkov I, Satterstrom FK, Corey LM (2008) Nanomed Nanotechnol Biol Med 4:167–171

    Article  CAS  Google Scholar 

  14. Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Nat Mater 8:543–557

    Article  CAS  Google Scholar 

  15. Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V (2010) ACS Nano 4:3623–3632

    Article  CAS  Google Scholar 

  16. Baer DR, Gaspar DJ, Nachimuthu P, Techane SD, Castner DG (2010) Anal Bioanal Chem 396:983–1002

    Article  CAS  Google Scholar 

  17. Zhang B, Yan B (2010) Anal Bioanal Chem 396:973–982

    Article  CAS  Google Scholar 

  18. MacCuspie RI, Rogers K, Patra M, Suo Z, Allen AJ, Martin MN, Hackley VA (2011) J Environ Monit 13:1212

    Article  CAS  Google Scholar 

  19. Dobrovolskaia MA, McNeil SE (2007) Nat Nanotechnol 2:469–478

    Article  CAS  Google Scholar 

  20. Takae S, Akiyama Y, Otsuka H, Nakamura T, Nagasaki Y, Kataoka K (2005) Biomacromolecules 6:818–824

    Article  CAS  Google Scholar 

  21. Pease LF, Tsai D-H, Zangmeister RA, Zachariah MR, Tarlov MJ (2007) J Phys Chem C 111:17155–17157

    Article  CAS  Google Scholar 

  22. Demers LM, Mirkin CA, Mucic RC, Reynolds RA, Letsinger RL, Elghanian R, Viswanadham G (2000) Anal Chem 72:5535–5541

    Article  CAS  Google Scholar 

  23. Hurst SJ, Lytton-Jean AKR, Mirkin CA (2006) Anal Chem 78:8313–8318

    Article  CAS  Google Scholar 

  24. Wuelfing WP, Gross SM, Miles DT, Murray RWJ (1998) Am Chem Soc 120:12696–12697

    Article  CAS  Google Scholar 

  25. Terrill RH, Postlethwaite TA, Chen C, Poon CD, Terzis A, Chen A, Hutchison JE, Clark MR, Wignall GJ (1995) Am Chem Soc 117:12537–12548

    Article  CAS  Google Scholar 

  26. Maccarini M, Briganti G, Rucareanu S, Lui XD, Sinibaldi R, Sztucki M, Lennox RBJ (2010) Phys Chem C 114:6937–6943

    Article  CAS  Google Scholar 

  27. Liang M, Lin IC, Whittaker MR, Minchin RF, Monteiro MJ, Toth I (2009) ACS Nano 4:403–413

    Article  Google Scholar 

  28. Gibson JD, Khanal BP, Zubarev ERJ (2007) Am Chem Soc 129:11653–11661

    Article  CAS  Google Scholar 

  29. Mansfield E, Kar A, Quinn TP, Hooker SA (2010) Anal Chem 82:9977–9982

    Article  CAS  Google Scholar 

  30. Boisselier E, Astruc D (2009) Chem Soc Rev 38:1759

    Article  CAS  Google Scholar 

  31. Cobley CM, Chen J, Cho EC, Wang LV, Xia Y (2011) Chem Soc Rev 40:44

    Article  CAS  Google Scholar 

  32. Arvizo R, Bhattacharya R, Mukherjee P (2010) Expert Opin Drug Deliv 7:753–763

    Article  CAS  Google Scholar 

  33. Han G, Ghosh P, Rotello VM (2007) Nanomed 2:113–123

    Article  CAS  Google Scholar 

  34. Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L (2004) Drug Delivery 11:169–183

    Article  CAS  Google Scholar 

  35. Yang P-H, Sun X, Chiu J-F, Sun H, He Q-Y (2005) Bioconjugate Chem 16:494–496

    Article  CAS  Google Scholar 

  36. Kim C, Agasti SS, Zhu Z, Isaacs L, Rotello VM (2010) Nature Chem 2:962–966

    Article  CAS  Google Scholar 

  37. Brown SD, Nativo P, Smith J-A, Stirling D, Edwards PR, Venugopal B, Flint DJ, Plumb JA, Graham D, Wheate NJJ (2010) Am Chem Soc 132:4678–4684

    Article  CAS  Google Scholar 

  38. Pissuwan D, Niidome T, Cortie MBJ (2011) Control Release 149:65–71

    Article  CAS  Google Scholar 

  39. Han G, You CC, Kim BJ, Turingan RS, Forbes NS, Martin CT, Rotello VM (2006) Angew Chem Int Ed Engl 45:3165–3169

    Article  CAS  Google Scholar 

  40. Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Adv Drug Deliv Rev 60:1307–1315

    Article  CAS  Google Scholar 

  41. Thomas M, Klibanov AM (2003) Proc Natl Acad Sci U S A 100:9138

    Article  CAS  Google Scholar 

  42. Baptista P, Pereira E, Eaton P, Doria G, Miranda A, Gomes I, Quaresma P, Franco R (2008) Anal Bioanal Chem 391:943–950

    Article  CAS  Google Scholar 

  43. Elghanian R (1997) Science 277:1078–1081

    Article  CAS  Google Scholar 

  44. Huang XH, Jain PK, El-Sayed IH, El-Sayed MA (2008) Lasers Med Sci 23:217–228

    Article  Google Scholar 

  45. Liao H, Nehl CL, Hafner JH (2006) Nanomed 1:201–208

    Article  CAS  Google Scholar 

  46. Examples include technologies developed by Cytimmune and Nanosphere.

  47. Kaiser DL, Watters RL Jr (2007) Report of investigation: gold nanoparticles, nominal 10 nm diameter; RM 8011. National Institute of Standards and Technology, Gaithersburg, MD, p 10, 20899

    Google Scholar 

  48. Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome YJ (2006) Control Release 114:343–347

    Article  CAS  Google Scholar 

  49. Shenoy D, Fu W, Li J, Crasto C, Jones G, DiMarzio C, Sridhar S, Amiji M (2006) Int J Nanomed 1:51

    Article  CAS  Google Scholar 

  50. Zhang G, Yang Z, Lu W, Zhang R, Huang Q, Tian M, Li L, Liang D, Li C (2009) Biomaterials 30:1928–1936

    Article  CAS  Google Scholar 

  51. Kang B, Mackey MA, El-Sayed MAJ (2010) Am Chem Soc 132:1517–1519

    Article  CAS  Google Scholar 

  52. Certain commercial equipment, instruments, or materials are identified in this document. Such identification implies neither recommendation nor endorsement by the National Institute of Standards and Technology, nor that the products identified are necessarily the best available for the purpose.

  53. Tsai D-H, DelRio FW, MacCuspie RI, Cho TJ, Zachariah MR, Hackley VA (2010) Langmuir 26:10325–10333

    Article  CAS  Google Scholar 

  54. Tsai D-H, DelRio FW, Keene AM, Tyner KM, MacCuspie RI, Cho TJ, Zachariah MR, Hackley VA (2011) Langmuir 27:2464–2477

    Article  CAS  Google Scholar 

  55. Daniel M, Astruc D (2004) Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  56. Harris DC (1995) Quantitative chemical analysis, 4th edn. W.H. Freeman and Company, New York

    Google Scholar 

  57. Strong L, Whitesides GM (1988) Langmuir 4:546–558

    Article  CAS  Google Scholar 

  58. Tambasco M, Kumar SK, Szleifer I (2008) Langmuir 24:8448–8451

    Article  CAS  Google Scholar 

  59. Stewart MH, Susumu K, Mei BC, Medintz IL, Delehanty JB, Blanco-Canosa JB, Dawson PE, Mattoussi HJ (2010) Am Chem Soc 132:9804–9813

    Article  CAS  Google Scholar 

  60. Mangeney C, Ferrage F, Aujard I, Marchi-Artzner V, Jullien L, Ouari O, Rékaï ED, Laschewsky A, Vikholm I, Sadowski JWJ (2002) Am Chem Soc 124:5811–5821

    Article  CAS  Google Scholar 

  61. Li Z, Jin R, Mirkin CA, Letsinger RL (2002) Nucleic Acids Res 30:1558–1562

    Article  CAS  Google Scholar 

  62. Letsinger RL, Elghanian R, Viswanadham G, Mirkin CA (2000) Bioconjug Chem 11:289–291

    Article  CAS  Google Scholar 

  63. Dougan JA, Karlsson C, Smith WE, Graham D (2007) Nucleic Acids Res 35:3668–3675

    Article  CAS  Google Scholar 

  64. Dixit V, Van den Bossche J, Sherman DM, Thompson DH, Andres RP (2006) Bioconjug Chem 17:603–609

    Article  CAS  Google Scholar 

  65. Langry KC, Ratto TV, Rudd RE, McElfresh MW (2005) Langmuir 21:12064–12067

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Karl Sebby gratefully acknowledges the NRC Research Associateship Program for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Mansfield.

Additional information

Contribution of NIST, an agency of the US government; not subject to copyright in the United States.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 290 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebby, K.B., Mansfield, E. Determination of the surface density of polyethylene glycol on gold nanoparticles by use of microscale thermogravimetric analysis. Anal Bioanal Chem 407, 2913–2922 (2015). https://doi.org/10.1007/s00216-015-8520-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8520-x

Keywords

Navigation