Skip to main content

Advertisement

Log in

A review of external microbeams for ion beam analyses

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ion microbeam facilities are analytical tools with high spatial resolution exploiting MeV ion beams. The interactions of beam particles with atoms and nuclei of the target induce the emission of characteristic radiation, the energy of which provides signatures of the compositional and/or structural properties of the target; Ion-Beam Analysis (IBA) techniques, based on the detection of such radiation, enable characterisation of samples of interest, e.g. in material and earth sciences, cultural heritage, biology, medicine, and environmental studies. External beams, obtained by extracting the particles into the atmosphere through a thin window, have many attractive features, e.g. non-destructive/non-invasive analysis and ease of working, so many laboratories have dedicated beam-lines to ex-vacuo IBA analyses. External microprobes have made it possible to obtain probes in the micron range by adopting strong focusing lenses, ultra-thin windows for beam extraction, and short/ultra-short external path of beam particles in light gases; they have also made possible the use of new external IBA techniques, e.g. BS, ERDA, STIM, and IBIC. By adopting systems to raster scan the beam over the sample, imaging capabilities have also become available for ex-vacuo analysis. External scanning microprobes + IBA techniques have enabled the characterisation of samples with high spatial resolution, comparable with that achievable in-vacuum for thick samples, avoiding sample damage.

IBA analysis of a precious lapis lazuli artefact at the Florence external microbeam

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jolly RK, Randers-Peherson G, Gupta SK, Buckle DC, Aceto H, Proc Third Conf. on Applications of Small Accelerators, Denton, Texas, 1974, NTIS Report CONF741040-PI

  2. Seaman GC, Shane KC (1975) Nucl Instrum Method 126:473–474

    Article  CAS  Google Scholar 

  3. Calligaro T, Dran J-C, Ioannidou E, Moignard B, Pichon L, Salomon J (2000) Nucl Instrum Method B 161–163:328–333

    Article  Google Scholar 

  4. Watt F, Grime GW (1987) High-energy ion microbeams. Adam Hilger, Bristol

    Google Scholar 

  5. Cookson JA (1979) Nucl Instrum Method 165:477–508

    Article  CAS  Google Scholar 

  6. Hamada N, Ni M, Funayama T, Sakashita T, Kobayashi Y (2008) Mutat Res 639:35–44

    CAS  Google Scholar 

  7. Gerardi S (2009) J Radiat Res 50(Suppl):A13–A20

    Article  CAS  Google Scholar 

  8. Meijer J, Stephan A, Adamczewski J, Reken H, Bukow HH, Rolfs C (1995) Nucl Instrum Method B 99:423–426

    Article  CAS  Google Scholar 

  9. Ryan CG, Jamieson DN (1999) Nucl Instrum Method B 158:997–1066

    Google Scholar 

  10. Dollinger G, Datzmann G, Hauptner A, Hertenberger R, Körner H-J, Reichart P, Volckaerts B (2003) Nucl Instrum Method B 210:6–13

    Article  CAS  Google Scholar 

  11. Randers-Pehrson G, Johnson GW, Marino SA, Xu Y, Dymnikov AD, Brenner DJ (2009) Nucl Instrum Method A 609:294–299

    Article  CAS  Google Scholar 

  12. Merchant MJ, Grime GW, Kirkby KJ, Webb R (2007) Nucl Instrum Method B 260:8–14

    Article  CAS  Google Scholar 

  13. Watt F, van Kan JA, Rajta I, Bettiol AA, Choo TF, Breese MBH, Osipowcz T (2003) Nucl Instrum Method B 210:14–20

    Article  CAS  Google Scholar 

  14. Grime GW, Dawson M, Marsh M, McArthur JD, Watt F (1991) Nucl Instrum Method B 54:353–362

    Article  Google Scholar 

  15. Moliere G (1948) Z Naturforsch 3a:78

    Google Scholar 

  16. http://www.srim.org/

  17. Enguita O, Fernandez-Jimenez MT, Garcıa G, Climent-Font A, Calderon T, Grime GW (2004) Nucl Instrum Method B 219–220:384–388

    Article  Google Scholar 

  18. Remazeilles C, Quillet V, Calligaro T, Dran J-C, Pichon L, Salomon J (2001) Nucl Instrum Method B 181:681–687

    Article  CAS  Google Scholar 

  19. Giuntini L, Massi M, Calusi S (2007) Nucl Instrum Method A 576:266–273

    Article  CAS  Google Scholar 

  20. Grassi N, Giuntini L, Massi M, Mandò PA (2007) Nucl Instrum Method B 256:712–718

    Article  CAS  Google Scholar 

  21. Chiari M, Del Carmine P, Garcìa Orellana I, Lucarelli F, Nava S, Paperetti L (2006) Nucl Instrum Method B 249:584–587

    Article  CAS  Google Scholar 

  22. Mandò PA (1994) Nucl Instrum Method B 85:815–823

    Article  Google Scholar 

  23. Calligaro T, Dran J-C, Hamon H, Moignard B, Salomon J (1998) Nucl Instrum Method B 136–138:339–343

    Article  Google Scholar 

  24. Kirby BJ, Legge GJF (1991) Nucl Instrum Method B 54:98–100

    Article  Google Scholar 

  25. Randers-Pehrson G, Johnson GW, Marino SA, Xua Y, Dymnikov AD, Brenner DJ (2009) Nucl Instrum Method A 609:294–299

    Article  CAS  Google Scholar 

  26. Ortega R, Devès G, Moretto Ph (2001) Nucl Instrum Method B 181:475–479

    Article  CAS  Google Scholar 

  27. Feng H, Yu Z, Chu PK (2006) Mater Sci Eng R 54:49–120

    Article  Google Scholar 

  28. Dran J-C, Salomon J, Calligaro T, Walter P (2004) Nucl Instrum Method B 219–220:7–15

    Article  Google Scholar 

  29. Mandò PA (2005) Nucl Phys A 751:393–408

    Article  Google Scholar 

  30. Respaldiza MA, Ager FJ, Carmona A, Ferrer J, García-León M, García-López J, García-Orellana I, Gómez-Tubío B, Morilla Y, Ontalba MA, Ortega-Feliu I (2008) Nucl Instrum Method B 266:2105–2109

    Article  CAS  Google Scholar 

  31. Perea A, Climent-Font A, Fernández-Jiménez M, Enguita O, Gutiérrez PC, Calusi S, Migliori A, Montero I (2006) Nucl Instrum Method B 249:638–641

    Article  CAS  Google Scholar 

  32. Migliori A, Grassi N, Mandò PA (2008) Nucl Instrum Method B 266:2339–2342

    Article  CAS  Google Scholar 

  33. Räisänen J, Anttila A (1982) Nucl Instrum Method 196:489–492

    Article  Google Scholar 

  34. Del Carmine P, Lucarelli F, Mandò PA, Pecchioli A (1993) Nucl Instrum Method B 75:480

    Article  Google Scholar 

  35. Calligaro T, McArthur JD, Salomon J (1996) Nucl Instrum Method B 109:125

    Article  Google Scholar 

  36. Neelmeijer C, Wagner W, Schramm HP (1996) Nucl Instrum Method B 118:338–345

    Article  CAS  Google Scholar 

  37. Kinomura A, Mokuno Y, Chayahara A, Tsubouchi N, Horino Y (2003) Nucl Instrum Method B 210:75–78

    Article  CAS  Google Scholar 

  38. Colombo E, Bosio A, Calusi S, Giuntini L, Lo Giudice A, Manfredotti C, Massi M, Olivero P, Romeo A, Romeo N, Vittone E (2009) Nucl Instrum Method B 267:2181–2184

    Article  CAS  Google Scholar 

  39. Lefèvre HW, Schofield RMS, Bench GS, Legge GJF (1991) Nucl Instrum Method B 54:363–370

    Article  Google Scholar 

  40. Yasuda K, Hai VH, Nomachi M, Sugaya Y, Yamamoto H (2007) Nucl Instrum Method B 260:207–212

    Article  CAS  Google Scholar 

  41. Grime GW, Abraham MH, Marsh MA (2001) Nucl Instrum Method B 181:66–70

    Article  CAS  Google Scholar 

  42. Mathis F, Moignard B, Pichon L, Dubreuil O, Salomon J (2005) Nucl Instrum Method B 240:532–538

    Article  CAS  Google Scholar 

  43. Komatsu H, Yamamoto H, Nomachi M, Yasuda K, Matsuda Y, Murata Y, Kijimura T, Sano H, Sakai T, Kamiya T (2007) Nucl Instrum Method B 260:201–206

    Article  CAS  Google Scholar 

  44. Nilsson C, Petriconi S, Reinert T, Butz T (2007) Nucl Instrum Method B 260:71–76

    Article  CAS  Google Scholar 

  45. Salomon J, Dran J-C, Guillou T, Moignard B, Pichon L, Walter P, Mathis F (2008) Nucl Instrum Method B 266:2273–2278

    Article  CAS  Google Scholar 

  46. http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html

  47. Ortega-Feliu I, Gómez-Tubío B, Ontalba Salamanca MÁ, Respaldiza MÁ, de la Bandera ML, Ovejero Zappino G (2007) Nucl Instrum Method B 260:329–335

    Article  CAS  Google Scholar 

  48. Zucchiatti A, Pascual C, Ynsa MD, Castelli L, Recio P, Criado E, Valle FJ, Climent-Font A (2008) J Eur Ceram Soc 28:757–762

    Article  CAS  Google Scholar 

  49. http://www-nds.iaea.org/ibandl/

  50. Boni C, Cereda E, Braga Marcazzan GM, De Tomasi V (1988) Nucl Instrum Method 35:80

    Article  Google Scholar 

  51. Lucarelli F, Mandò PA, Nava S, Prati P, Zucchiatti A (2004) J Air Waste Manage Assoc 54:1372–1382

    CAS  Google Scholar 

  52. Calzolai G, Chiari M, Lucarelli F, Nava S, Portarena S (2010) Nucl Instrum Method B 268:1540–1545

    Article  CAS  Google Scholar 

  53. Sakai T, Kamiya T, Oikawa M, Sato T, Tanaka A, Ishii K (2002) Nucl Instrum Method B 190:271–275

    Article  CAS  Google Scholar 

  54. Yamamoto H, Nomachi M, Yasuda K, Iwami Y, Ebisu S, Komatsu H, Sakai T, Kamiya T (2007) Nucl Instrum Method B 260:194–200

    Article  CAS  Google Scholar 

  55. Komatsu H, Yamamoto H, Nomachi M, Yasuda K, Matsuda Y, Kinugawa M, Kijimura T, Sano H, Satou T, Oikawa S, Kamiya T (2009) Nucl Instrum Method B 267:2136–2139

    Article  CAS  Google Scholar 

  56. Spemann D, Jankuhn St, Vogt J, Butz T (2000) Nucl Instrum Method B 161–163:867–871

    Article  Google Scholar 

  57. Sha Y, Zhang P, Wang G, Zhang X, Wang X (2002) Nucl Instrum Method B 189:408–411

    Article  CAS  Google Scholar 

  58. Enguita O, Calderón T, Fernández-Jiménez MT, Beneitez P, Millan A, García G (2004) Nucl Instrum Method B 219–220:53–56

    Article  Google Scholar 

  59. Quaranta A, Salomon J, Dran J-C, Tonezzer M, Della Mea G (2007) Nucl Instrum Method B 254:289–294

    Article  CAS  Google Scholar 

  60. Calusi S, Colombo E, Giuntini L, Lo Giudice A, Manfredotti C, Massi M, Pratesi G, Vittone E (2008) Nucl Instrum Method B 266:2306–2310

    Article  CAS  Google Scholar 

  61. Lo Giudice A, Re A, Calusi S, Giuntini L, Massi M, Olivero P, Pratesi G, Albonico M, Conz E (2009) Anal Bioanal Chem 395:2211–2217

    Article  CAS  Google Scholar 

  62. Doyle BL (1983) Nucl Instrum Method 218:29–32

    Article  CAS  Google Scholar 

  63. http://www.simnra.com/

  64. Reiche I, Castaing J, Calligaro T, Salomon J, Aucouturier M, Reinholz U, Weise H-P (2006) Nucl Instrum Method B 249:608–611

    Article  CAS  Google Scholar 

  65. Llabador Y, Moretto Ph (1998) Nuclear microprobes in the life sciences. World Scientific, Singapore

    Google Scholar 

  66. Williams ET (1984) Nucl Instrum Method B 3:211

    Article  Google Scholar 

  67. Sugimoto A, Ishii K, Matsuyama S, Satoh T, Gotoh K, Yamazaki H, Akama C, Sato M, Sakai T, Kamiya T, Oikawa M, Saido M, Tanaka R (1999) Int J PIXE 9:151–160

    Article  CAS  Google Scholar 

  68. Kamiya T, Sakai T, Oikawa M, Satoh T, Ishii K, Sugimoto A, Matsuyama S (1999) Int J PIXE 9:217–225

    Article  CAS  Google Scholar 

  69. Chiari M, Migliori A, Mandò PA (2002) Nucl Instrum Method B 188:162–165

    Article  CAS  Google Scholar 

  70. Šmit Ž, Uršič M, Pelicon P, Trček-Pečak T, Šeme B, Smrekar A, Langus I, Nemec I, Kavkler K (2008) Nucl Instrum Method B 266:2047–2059

    Article  Google Scholar 

  71. Hietel B, Menzel N, Wittmaack K (1996) Nucl Instrum Method B 109/110:139–143

    Article  CAS  Google Scholar 

  72. Lill JO (1999) Nucl Instrum Method B 150:114–117

    Article  CAS  Google Scholar 

  73. Budnar M, Uršič M, Simčič J, Pelicon P, Kolar J, Šelih VS, Strlič M (2006) Nucl Instrum Method B 243:407–416

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is deeply indebted to Dr M. Massi and Dr P. Olivero for many fruitful discussions and suggestions. This work was carried out in the framework of the experiment “FARE” of the Italian National Institute of Nuclear Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Giuntini.

Additional information

Published in the special issue Imaging Techniques with Synchrotron Radiation with Guest Editor Cyril Petibois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giuntini, L. A review of external microbeams for ion beam analyses. Anal Bioanal Chem 401, 785–793 (2011). https://doi.org/10.1007/s00216-011-4889-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4889-3

Keywords

Navigation