Skip to main content
Log in

Atomic effective potentials for starting molecular electronic structure calculations

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Atomic effective one-electron potentials in a compact analytic form in terms of a few Gaussian charge distributions are developed, for hydrogen through nobelium, for starting molecular electronic structure calculations by a simple diagonalization. For each element, all terms but one are optimized in an isolated-atom Hartree–Fock calculation, and the last one is parametrized on a set of molecules. This one-parameter-per-atom model gives a good starting guess for typical molecules and may be of interest even on its own.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. To be found at https://github.com/briling/aepm.

References

  1. Hoffmann R (1963) J Chem Phys 39:1397. https://doi.org/10.1063/1.1734456

    Article  CAS  Google Scholar 

  2. King HF, Stanton RE, Kim H, Wyatt RE, Parr RG (1967) J Chem Phys 47:1936. https://doi.org/10.1063/1.1712221

    Article  CAS  Google Scholar 

  3. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347. https://doi.org/10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  4. Huzinaga S, Andzelm J, Klobukowski M, Radzio-Andzelm E, Sakai Y, Tatewaki H (1984) Gaussian basis sets for molecular calculations, vol 16. Physical sciences data. Elsevier, Amsterdam

    Google Scholar 

  5. Sharp RT, Horton GK (1953) Phys Rev 90:317. https://doi.org/10.1103/physrev.90.317

    Article  Google Scholar 

  6. Talman JD, Shadwick WF (1976) Phys Rev A 14:36. https://doi.org/10.1103/physreva.14.36

    Article  CAS  Google Scholar 

  7. Maldonado P, Sarsa A, Buendía E, Gálvez F (2011) Atom Data Nucl Data 97:109. https://doi.org/10.1016/j.adt.2010.10.002

    Article  CAS  Google Scholar 

  8. Kohn W, Sham LJ (1965) Phys Rev 140:A1133. https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  9. Harris J (1985) Phys Rev B 31:1770. https://doi.org/10.1103/physrevb.31.1770

    Article  CAS  Google Scholar 

  10. Becke AD (1988) J Chem Phys 88:2547. https://doi.org/10.1063/1.454033

    Article  CAS  Google Scholar 

  11. Laqua H, Kussmann J, Ochsenfeld C (2018) J Chem Phys 149:204111. https://doi.org/10.1063/1.5049435

    Article  CAS  PubMed  Google Scholar 

  12. Lehtola S (2019) J Chem Theory Comput 15:1593. https://doi.org/10.1021/acs.jctc.8b01089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Van Lenthe JH, Zwaans R, Van Dam HJJ, Guest MF (2006) J Comput Chem 27:926. https://doi.org/10.1002/jcc.20393

    Article  CAS  PubMed  Google Scholar 

  14. Amat L, Carbó-Dorca R (2001) Int J Quantum Chem 87:59. https://doi.org/10.1002/qua.10068

    Article  CAS  Google Scholar 

  15. Sambe H, Felton RH (1975) J Chem Phys 62:1122. https://doi.org/10.1063/1.430555

    Article  CAS  Google Scholar 

  16. Dunlap BI, Connolly JWD, Sabin JR (1979) J Chem Phys 71:3396. https://doi.org/10.1063/1.438728

    Article  CAS  Google Scholar 

  17. Slater JC (1951) Phys Rev 81:385. https://doi.org/10.1103/PhysRev.81.385

    Article  CAS  Google Scholar 

  18. Dunlap BI (1986) J Phys Chem 90:5524. https://doi.org/10.1021/j100280a010

    Article  CAS  Google Scholar 

  19. Laikov DN (1997) Chem Phys Lett 281:151. https://doi.org/10.1016/S0009-2614(97)01206-2

    Article  CAS  Google Scholar 

  20. Nazari F, Whitten JL (2017) J Chem Phys 146:194109. https://doi.org/10.1063/1.4983395

    Article  CAS  PubMed  Google Scholar 

  21. Whitten JL (2019) J Chem Phys 150:034107. https://doi.org/10.1063/1.5064781

    Article  CAS  PubMed  Google Scholar 

  22. Whitten JL (2019) Phys Chem Chem Phys 21:21541. https://doi.org/10.1039/c9cp02450f

    Article  CAS  PubMed  Google Scholar 

  23. Boys SF (1950) Proc R Soc A 200:542. https://doi.org/10.1098/rspa.1950.0036

    Article  CAS  Google Scholar 

  24. Laikov DN (2019) Theor Chem Acc 138:40. https://doi.org/10.1007/s00214-019-2432-3

    Article  CAS  Google Scholar 

  25. Dyall KG (1994) J Chem Phys 100:2118. https://doi.org/10.1063/1.466508

    Article  CAS  Google Scholar 

  26. Visscher L, Dyall KG (1997) Atom Data Nucl Data 67:207. https://doi.org/10.1006/adnd.1997.0751

    Article  CAS  Google Scholar 

  27. Laikov DN (2019) J Chem Phys 150:061103. https://doi.org/10.1063/1.5082231

    Article  CAS  PubMed  Google Scholar 

  28. Kahn LR, Baybutt P, Truhlar DG (1976) J Chem Phys 65:3826. https://doi.org/10.1063/1.432900

    Article  CAS  Google Scholar 

  29. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  30. Laikov DN (2005) Chem Phys Lett 416:116. https://doi.org/10.1016/j.cplett.2005.09.046

    Article  CAS  Google Scholar 

  31. Laikov DN (2011) J Chem Phys 135:134120. https://doi.org/10.1063/1.3646498

    Article  CAS  PubMed  Google Scholar 

  32. McMurchie LE, Davidson ER (1978) J Comput Phys 26:218. https://doi.org/10.1016/0021-9991(78)90092-x

    Article  CAS  Google Scholar 

  33. Havriliak S, King HF (1983) J Am Chem Soc 105:4. https://doi.org/10.1021/ja00339a002

    Article  CAS  Google Scholar 

  34. Wolinski K, Pulay P (2003) J Chem Phys 118:9497. https://doi.org/10.1063/1.1562606

    Article  CAS  Google Scholar 

  35. Deng J, Gilbert ATB, Gill PMW (2009) J Chem Phys 130:231101. https://doi.org/10.1063/1.3152864

    Article  CAS  PubMed  Google Scholar 

  36. Deng J, Gilbert ATB, Gill PMW (2010) J Chem Phys 133:044116. https://doi.org/10.1063/1.3463800

    Article  CAS  PubMed  Google Scholar 

  37. Martin J, Baker J, Pulay P (2009) J Comput Chem 30:881. https://doi.org/10.1002/jcc.21106

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ksenia R. Briling.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laikov, D.N., Briling, K.R. Atomic effective potentials for starting molecular electronic structure calculations. Theor Chem Acc 139, 17 (2020). https://doi.org/10.1007/s00214-019-2521-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2521-3

Keywords

Navigation