Skip to main content
Log in

Methane functionalization by an Ir(III) catalyst supported on a metal–organic framework: an alternative explanation of steric confinement effects

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A highly selective Ir catalyst supported on the metal–organic framework (MOF) UiO-67 for the catalytic borylation of methane has recently been synthesized. The high chemoselectivity of the catalyst toward monoborylated methane (CH3Bpin, Bpin = pinacolborane) instead of diborylated methane (CH2Bpin2) was speculated to be caused by the steric confinement of MOF UiO-67. In this study, we applied quantum mechanical methods to determine: (1) the steric effect of the UiO-67 framework in promoting the chemoselectivity of the Ir catalyst toward CH3Bpin and (2) the borylation mechanisms over the Ir catalyst supported on UiO-67. Our results show that UiO-67 framework sterically obstructs the diffusion of the larger CH2Bpin2 molecule within the MOF while allowing the smaller CH3Bpin molecule to pass through with little energy penalty. The diffusion of CH2Bpin2 from the tetrahedral pore to the tetragonal pyramidal pore within modified UiO-67 with coordinated Ir(Bpin)3 complex has an estimated barrier of 24.7 kcal/mol and is 14.2 kcal/mol higher than the diffusion of CH3Bpin. The electronic and steric effects of the support at the Ir catalytic center are much smaller than this confinement effect on diffusion, and the catalytic center behaves similarly to the homogeneous Ir catalyst. We determined an overall free energy of activation of 34.6 kcal/mol for the CH4 borylation reaction using the Ir(III) catalyst. We also determined that the turnover-determining step for the catalytic methane borylation is the isomerization of seven-coordinated Ir(V) complex instead of the commonly assumed C–H bond activation by oxidative addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Cartesian coordinates for all optimized models and complexes (in XYZ file format) and for periodic structures (in CIF file format), and DDEC bond order analysis outputs for complexes g and iso-g are provided in the OUTPUT file which may be opened as a text file. Detailed energy profiles for CH3Bpin and CH2Bpin diffusion in UiO-67 and for catalytic methane borylation cycles over the (phen)Ir(Bpin)3 complex, and verifications of the CP2K results are provided in the ESM file.

References

  1. Cook AK, Schimler SD, Matzger AJ, Sanford MS (2016) Catalyst-controlled selectivity in the C–H borylation of methane and ethane. Science 351:1421–1424

    Article  CAS  Google Scholar 

  2. Crabtree RH, Lei A (2017) Introduction: CH activation. Chem Rev 117:8481–8482

    Article  CAS  Google Scholar 

  3. Gunsalus NJ, Koppaka A, Park SH, Bischof SM, Hashiguchi BG, Periana RA (2017) Homogeneous functionalization of methane. Chem Rev 117:8521–8573

    Article  CAS  Google Scholar 

  4. Hartwig J (2016) Evolution of C–H bond functionalization from methane to methodology. J Am Chem Soc 138:2–24

    Article  CAS  Google Scholar 

  5. Zhang X, Huang Z, Ferrandon M, Yang D, Robison L, Li P, Wang TC, Delferro M, Farha OK (2018) Catalytic chemoselective functionalization of methane in a metal–organic framework. Nat Catal 1:356–362

    Article  CAS  Google Scholar 

  6. Cho S-H, Ma B, Nguyen ST, Hupp JT, Albrecht-Schmitt TEA (2006) A metal–organic framework material that functions as an enantioselective catalyst for olefin epoxidation. Chem Commun 37(24):2563–2565

    Article  Google Scholar 

  7. Guo Z, Xiao C, Maligal-Ganesh RV, Zhou L, Goh TW, Li X, Tesfagaber D, Thiel A, Huang W (2014) Pt nanoclusters confined within metal–organic framework cavities for chemoselective cinnamaldehyde hydrogenation. ACS Catal 4:1340–1348

    Article  CAS  Google Scholar 

  8. Madrahimov ST, Gallagher JR, Zhang G, Meinhart Z, Garibay SJ, Delferro M, Miller JT, Farha OK, Hupp JT, Nguyen ST (2015) Gas-phase dimerization of ethylene under mild conditions catalyzed by MOF materials containing (bpy)NiII complexes. ACS Catal 5:6713–6718

    Article  CAS  Google Scholar 

  9. Ye R, Hurlburt TJ, Sabyrov K, Alayoglu S, Somorjai GA (2016) Molecular catalysis science: perspective on unifying the fields of catalysis. Proc Natl Acad Sci 113:5159–5166

    Article  CAS  Google Scholar 

  10. Metzger ED, Comito RJ, Hendon CH, Dincă M (2017) Mechanism of single-site molecule-like catalytic ethylene dimerization in Ni-MFU-4. J Am Chem Soc 139:757–762

    Article  CAS  Google Scholar 

  11. Ali-Mousa H, Amador RN, Martinez J, Lamaty F, Carboni M, Bantreil X (2017) Synthesis and post-synthetic modification of UiO-67 type metal–organic frameworks by mechanochemistry. Mater Lett 197:171–174

    Article  Google Scholar 

  12. Hu Z, Zhao D (2017) Metal–organic frameworks with lewis acidity: synthesis, characterization, and catalytic applications. CrystEngComm 19:4066–4081

    Article  CAS  Google Scholar 

  13. Kumar G, Das SK (2017) Coordination frameworks containing compounds as catalysts. Inorg Chem Front 4:202–233

    Article  CAS  Google Scholar 

  14. Rogge SMJ, Bavykina A, Hajek J, Garcia H, Olivos-Suarez AI, Sepúlveda-Escribano A, Vimont A, Clet G, Bazin P, Kapteijn F, Daturi M, Ramos-Fernandez EV, Llabrés i Xamena FX, Van Speybroeck V, Gascon J (2017) Metal–organic and covalent organic frameworks as single-site catalysts. Chem Soc Rev 46:3134–3184

    Article  CAS  Google Scholar 

  15. Bernales V, Ortuño MA, Truhlar DG, Cramer CJ, Gagliardi L (2018) Computational design of functionalized metal–organic frameworks nodes for catalysis. ACS Cent Sci 4:5–19

    Article  CAS  Google Scholar 

  16. Xu W, Thapa KB, Ju Q, Fang Z, Huang W (2018) Heterogeneous catalysts based on mesoporous metal–organic frameworks. Coord Chem Rev 373:199–232

    Article  CAS  Google Scholar 

  17. Wang C, An B, Lin W (2019) Metal–organic frameworks in solid–gas phase catalysis. ACS Catal 9:130–146

    Article  CAS  Google Scholar 

  18. Smith KT, Berritt S, González-Moreiras M, Ahn S, Smith MR, Baik M-H, Mindiola DJ (2016) Catalytic borylation of methane. Science 351:1424–1427

    Article  CAS  Google Scholar 

  19. Ahn S, Sorsche D, Berritt S, Gau MR, Mindiola DJ, Baik M-H (2018) Rational design of a catalyst for the selective monoborylation of methane. ACS Catal 8:10021–10031

    Article  CAS  Google Scholar 

  20. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  21. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561

    Article  CAS  Google Scholar 

  22. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid–metal–amorphous–semiconductor transition in germanium. Phys Rev B 49:14251–14269

    Article  CAS  Google Scholar 

  23. Kresse G, Furthmüller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  24. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  25. Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100:136406

    Article  Google Scholar 

  26. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  27. Øien S, Wragg D, Reinsch H, Svelle S, Bordiga S, Lamberti C, Lillerud KP (2014) Detailed structure analysis of atomic positions and defects in zirconium metal–organic frameworks. Cryst Growth Des 14:5370–5372

    Article  Google Scholar 

  28. Hutter J, Iannuzzi M, Schiffmann F, VandeVondele J (2014) CP2K: atomistic simulations of condensed matter systems. Wiley Interdiscip Rev Comput Mol Sci 4:15–25

    Article  CAS  Google Scholar 

  29. Perdew J, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  30. Goedecker S, Teter M, Hutter J (1996) Separable dual-space Gaussian pseudopotentials. Phys Rev B 54:1703–1710

    Article  CAS  Google Scholar 

  31. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 (revision A.03). Gaussian Inc, Wallingford

    Google Scholar 

  33. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101

    Article  Google Scholar 

  34. Cramer CJ, Truhlar DG (2009) Density functional theory for transition metals and transition metal chemistry. Phys Chem Chem Phys 11:10757–10816

    Article  CAS  Google Scholar 

  35. Yu HS, He X, Truhlar DG (2016) MN15-L: a new local exchange-correlation functional for kohn–sham density functional theory with broad accuracy for atoms, molecules, and solids. J Chem Theory Comput 12:1280–1293

    Article  CAS  Google Scholar 

  36. Weigend F (2006) Accurate coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys 8:1057–1065

    Article  CAS  Google Scholar 

  37. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  38. Yu HS, Fiedler LJ, Alecu IM, Truhlar DG (2017) Computational thermochemistry: automated generation of scale factors for vibrational frequencies calculated by electronic structure model chemistries. Comput Phys Commun 210:132–138

    Article  CAS  Google Scholar 

  39. Pratt LM, Truhlar DG, Cramer CJ, Kass SR, Thompson JD, Xidos JD (2007) Aggregation of alkyllithiums in tetrahydrofuran. J Org Chem 72:2962–2966

    Article  CAS  Google Scholar 

  40. Marenich AV, Jerome C, Cramer CJ, Truhlar DG (2012) Charge model 5: an extension of hirshfeld population analysis for the accurate description of molecular interactions in gaseous and condensed phases. J Chem Theory Comput 8:527–541

    Article  CAS  Google Scholar 

  41. Kozuch S, Shaik S (2011) How to conceptualize catalytic cycles? The energetic span model. Acc Chem Res 44:101–110

    Article  CAS  Google Scholar 

  42. Manz TA (2017) Introducing DDEC6 atomic population analysis: part 3. Comprehensive method to compute bond orders. RSC Adv 7:45552–45581

    Article  CAS  Google Scholar 

  43. Mouarrawis V, Plessius R, van der Vlugt JI, Reek JNH (2018) Confinement effects in catalysis using well-defined materials and cages. Front Chem 6:623

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Massimiliano Delferro, Omar K. Farha, and Connie C. Lu for many helpful discussions. This work was supported as part of the Inorganometallic Catalysis Design Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award DE-SC0012702.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Yang, Laura Gagliardi or Donald G. Truhlar.

Ethics declarations

Conflict interest

The authors declare that there is no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1714 kb)

Supplementary material 2 (FILE 3215 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Wu, XP., Gagliardi, L. et al. Methane functionalization by an Ir(III) catalyst supported on a metal–organic framework: an alternative explanation of steric confinement effects. Theor Chem Acc 138, 107 (2019). https://doi.org/10.1007/s00214-019-2498-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2498-y

Keywords

Navigation