Skip to main content

Advertisement

Log in

A Stable Zn-Based Metal–Organic Framework as an Efficient Catalyst for Carbon Dioxide Cycloaddition and Alcoholysis at Mild Conditions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Developing highly efficient heterogeneous catalysts for cycloaddition of CO2 and epoxides to produce cyclic carbonates is promising but challenging. In this work, a novel three-dimensional metal organic framework (MOF) with cylinder pore systems and unsaturated Zn sites has been demonstrated as potent candidate in CO2 fixation at mild and solvent-free conditions. The Zn(atz)(bdc)0.5, where atz = aminotriazole and H2bdc = terephthalic, exhibits microporous nature that can regulate the catalytic interaction of active centers and substrates. The structure stability has been systematically investigated and proven to be sufficient for practical application. Furthermore, the cooperative effects of porosity, CO2 binding affinity, activation centers, and synergism with co-catalyst have been deeply investigated. Moreover, high propylene epoxide conversion (97%) and selectivity (> 99%) have been achieved at mild conditions (60 °C and 1 MPa) with excellent cycle stability. Owing to the well-defined pore system, an obvious substrates selectivity has been clearly observed. A possible catalytic mechanism has been proposed and verified by DFT calculations. Furthermore, the prepared Zn-MOF can also be used as an efficient heterogeneous catalyst for the reaction of epoxides with alcohols to produce β-alkoxy alcohol.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maina J, Gonzalo C, Kong L et al (2017) Mater Horiz 4:345–361

    Article  CAS  Google Scholar 

  2. Wang J, Zhang P, Liu L et al (2018) Chem Eng J 348:57–66

    Article  CAS  Google Scholar 

  3. Zhao Z, Qin J, Zhang C et al (2017) Inorg Chem 56:4568–4575

    Article  Google Scholar 

  4. Martínez J, Osma J, Earlam A et al (2005) Chem Eur J 21:9850–9862

    Article  Google Scholar 

  5. He H, Perman J, Zhu G et al (2016) Small 46:6309–6324

    Article  Google Scholar 

  6. Gao W, Tsai C, Wojtas L et al (2016) Inorg Chem 55:7291–9294

    Article  CAS  Google Scholar 

  7. Li P, Wang X, Liu J et al (2017) Chem Mater 29:9256–9261

    Article  CAS  Google Scholar 

  8. Kim Y, Hyun K, Ahn D et al (2019) Chemsuschem 12(18):4211–4220

    Article  CAS  Google Scholar 

  9. Yamaguchi K, Ebitani K, Yoshida et al (1999) J Am Chem Soc 121:4526–4527

    Article  CAS  Google Scholar 

  10. Huang J, Shi M (2003) J Org Chem 68:6705–6709

    Article  CAS  Google Scholar 

  11. Du Y, Yang H, Wan S et al (2017) J Mater Chem A. 5:9163–9168

    Article  CAS  Google Scholar 

  12. Liu T, Liang J, Huang Y et al (2016) Chem Commun 52:13288–13291

    Article  CAS  Google Scholar 

  13. Fukuoka S, Kawamura M, Komiya K et al (2003) Green Chem 5:497–507

    Article  CAS  Google Scholar 

  14. Stock N, Biswas S (2012) Chem Res 43(16):933–969

    Google Scholar 

  15. Zhu X, Zheng H, Wei X et al (2013) Chem Commun 49(13):1276–1278

    Article  CAS  Google Scholar 

  16. Wang Y, Hu Z, Cheng Y et al (2017) Ind Eng Chem Res 56:4508–4516

    Article  CAS  Google Scholar 

  17. Taherimehr M, Voorde B, Wee L et al (2017) Chemsuschem 10:1283–1291

    Article  CAS  Google Scholar 

  18. Liu L, Wang S, Han Z et al (2016) Inorg Chem 55:3558–3565

    Article  CAS  Google Scholar 

  19. Cao J, Shan W, Wang Q et al (2019) ACS Appl Mater Interfaces 11(6):6031–6041

    Article  CAS  Google Scholar 

  20. Kresse G, Hafner J (1993) Phys Rev B 48(17):13115–13118

    Article  CAS  Google Scholar 

  21. Kresse G (1996) Phys Rev B 54(16):11169–11186

    Article  CAS  Google Scholar 

  22. Kresse G, Joubert D (1999) Phys Rev B 59(15):1758–1775

    Article  CAS  Google Scholar 

  23. Vaidhyanathan R, Iremonger S, Shimizu G et al (2010) Science 330(6004):650–653

    Article  CAS  Google Scholar 

  24. Liu B, Zhao R, Yang G et al (2013) CrystEngComm 15:2057–2060

    Article  CAS  Google Scholar 

  25. Babu R, Kathalikkattil A, Roshan R et al (2016) Green Chem 18:232–242

    Article  Google Scholar 

  26. Zhang Y, Zhang P, Yu W et al (2019) ACS Appl Mater Interfaces 11:10680–10688

    Article  CAS  Google Scholar 

  27. Huang Y, Qin W, Li Y et al (2012) Dalton Trans 41(31):9283–9285

    Article  CAS  Google Scholar 

  28. Zhang Y, Zhang P, Yu W et al (2018) Ind Eng Chem Res 57:14191–14201

    Article  CAS  Google Scholar 

  29. Wu, X, Bao, Z, Yuan, B, et al (2013) Microporous Mesoporous Mater 180(9): 676, 114–122

  30. Yang Q, Xue C, Zhong C et al (2007) Am Inst Chem Eng 53(11):2832–2840

    Article  CAS  Google Scholar 

  31. Liu S, Wang B, Wang Z et al (2018) Dalton Trans 47:11925–11933

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work is partially supported by the National Natural Science Foundation of China (No.51672186 and 21908090), Natural Science Foundation of Jiangxi Province (No.20192ACB21015), and the start-up funds of Nanchang University and Arizona State University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Wang or Shuguang Deng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2782 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Z., Wang, J., He, Y. et al. A Stable Zn-Based Metal–Organic Framework as an Efficient Catalyst for Carbon Dioxide Cycloaddition and Alcoholysis at Mild Conditions. Catal Lett 150, 1408–1417 (2020). https://doi.org/10.1007/s10562-019-03053-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-03053-6

Keywords

Navigation