Skip to main content
Log in

Derivatives of the approximated electrostatic potentials in unrestricted Hartree–Fock based on the fragment molecular orbital method and an application to polymer radicals

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The analytic energy gradient for the point charge approximation of the embedding potential is derived in the framework of unrestricted Hartree–Fock based on the fragment molecular orbital method (FMO). For this goal, we derive the necessary coupled-perturbed unrestricted Hartree–Fock equations, describing the response terms arising from the use of embedding atomic charges in dimer calculations. By a comparison to numerical gradients and with the aid of molecular dynamics, we show that the gradients have a high accuracy. A speed-up of the factor 7.3 is obtained for the largest system, when approximated potentials are used relative to the exact two-electron embedding. We apply the FMO method to polymer radicals and show that it has satisfactory accuracy in reproducing the geometries and energies of polymer radical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Goedecker S (1999) Rev Mod Phys 71:1085

    Article  CAS  Google Scholar 

  2. Scuseria GE (1999) J Phys Chem A 103:4782

    Article  CAS  Google Scholar 

  3. Li X, Milliam JM, Scuseria GE, Frisch MJ, Schlegel HB (2003) J Chem Phys 119:7651

    Article  CAS  Google Scholar 

  4. Mezey PG, Leszczynski J (2011) Linear-scaling techniques in computational chemistry and physics. Springer, New York

    Google Scholar 

  5. Reimers JR (2011) Computational methods for large systems: electronic structure approaches for biotechnology and nanotechnology. Wiley, New York

    Book  Google Scholar 

  6. Gordon MS, Fedorov DG, Pruitt SR, Slipchenko LV (2012) Chem Rev 112:632

    Article  CAS  Google Scholar 

  7. Otto P, Ladik J (1975) Chem Phys 8:192

    Article  CAS  Google Scholar 

  8. Yang W (1991) Phys Rev Lett 66:1438

    Article  CAS  Google Scholar 

  9. Gao JL (1997) J Phys Chem B 101:657

    Article  CAS  Google Scholar 

  10. Wang Y, Sosa CP, Cembran A, Truhlar DG, Gao J (2012) J Phys Chem B 116:6781

    Article  CAS  Google Scholar 

  11. Korchowiec J, Gu FL, Aoki Y (2005) Int J Quantum Chem 105:875

    Article  CAS  Google Scholar 

  12. Aoki Y, Gu FL (2012) Phys Chem Chem Phys 14:7640

    Article  CAS  Google Scholar 

  13. Chen XH, Zhang JZH (2004) J Theor Comput Chem 3:277

    Article  CAS  Google Scholar 

  14. Hua S, Li W, Li S (2013) Chem Phys Chem 14:108

    Article  CAS  Google Scholar 

  15. Gordon MS, Mullin JM, Pruitt SR, Roskop LB, Slipchenko LV, Boatz JA (2009) J Phys Chem B 113:9646

    Article  CAS  Google Scholar 

  16. Flick JC, Kosenkov D, Hohenstein EG, Sherrill CD, Slipchenko LV (2012) J Chem Theory Comput 8:2835

    Article  CAS  Google Scholar 

  17. Kobayashi M, Yoshikawa T, Nakai H (2010) Chem Phys Lett 500:172

    Article  CAS  Google Scholar 

  18. He X, Merz KM (2010) J Chem Theory Comput 6:405

    Article  CAS  Google Scholar 

  19. Kobayashi M, Nakai H (2012) Phys Chem Chem Phys 14:7629

    Article  CAS  Google Scholar 

  20. Collins MA (2012) Phys Chem Chem Phys 14:7744

    Article  CAS  Google Scholar 

  21. Huang L, Massa L (2012) Future Med Chem 4:1479

    Article  CAS  Google Scholar 

  22. Söderhjelm P, Kongsted J, Ryde U (2010) J Chem Theory Comput 6:1726

    Article  Google Scholar 

  23. Sahu N, Yeole SD, Gadre SR (2013) J Chem Phys 138:104101

    Article  Google Scholar 

  24. Frank A, Möller HM, Exner TE (2012) J Chem Theory Comput 8:1480

    Article  CAS  Google Scholar 

  25. Kurbanov EK, Leverentz HR, Truhlar DG, Amin EA (2012) J Chem Theory Comput 8:1

    Article  CAS  Google Scholar 

  26. Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Chem Phys Lett 313:701

    Article  CAS  Google Scholar 

  27. Fedorov DG, Kitaura K (2009) The fragment molecular orbital method: practical applications to large molecular systems. CRC Press, Boca Raton, FL

    Google Scholar 

  28. Fedorov DG, Kitaura K (2007) J Phys Chem A 111:6904

    Article  CAS  Google Scholar 

  29. Fedorov DG, Nagata T, Kitaura K (2012) Phys Chem Chem Phys 14:7562

    Article  CAS  Google Scholar 

  30. Steinmann C, Fedorov DG, Jensen JH (2013) PLoS One 8:e60602

    Article  CAS  Google Scholar 

  31. Sugiki SI, Kurita N, Sengoku Y, Sekino H (2003) Chem Phys Lett 382:611

    Article  CAS  Google Scholar 

  32. Fedorov DG, Kitaura K (2004) J Chem Phys 121:2483

    Article  CAS  Google Scholar 

  33. Fedorov DG, Kitaura K (2005) J Chem Phys 123:134103

    Article  Google Scholar 

  34. Pruitt SR, Fedorov DG, Kitaura K, Gordon MS (2010) J Chem Theory Comput 6:1

    Article  CAS  Google Scholar 

  35. Pruitt SR, Fedorov DG, Gordon MS (2012) J Phys Chem A 116:4965

    Article  CAS  Google Scholar 

  36. Fedorov DG, Kitaura K (2005) J Chem Phys 122:0541081

    Article  Google Scholar 

  37. Komeiji Y, Mochizuki Y, Nakano T, Mori H (2012) Recent advances in fragment molecular orbital-based molecular dynamics(FMO-MD) simulations. InTech

  38. Nakata H, Fedorov DG, Nagata T, Yokojima S, Ogata K, Kitaura K, Nakamura S (2012) J Chem Phys 137:044110

    Article  Google Scholar 

  39. Fedorov DG, Avramov PV, Jensen JH, Kitaura K (2009) Chem Phys Lett 477:169

    Article  CAS  Google Scholar 

  40. Sawada T, Fedorov DG, Kitaura K (2010) J Am Chem Soc 132:16862

    Article  CAS  Google Scholar 

  41. Alexeev Y, Mazanetz MP, Ichihara O, Fedorov DG (2012) Curr Top Med Chem 12:2013

    Article  CAS  Google Scholar 

  42. Watanabe T, Inadomi Y, Fukuzawa K, Nakano T, Tanaka S, Nilsson L, Nagashima U (2007) J Phys Chem B 111:9621

    Article  CAS  Google Scholar 

  43. Carlson PJ, Bose S, Armstrong DW, Hawkins T, Gordon MS, Petrich JW (2012) J Phys Chem B 116:503

    Article  CAS  Google Scholar 

  44. Fukunaga H, Fedorov DG, Chiba M, Nii K, Kitaura K (2008) J Phys Chem A 112:10887

    Article  CAS  Google Scholar 

  45. Avramov PV, Fedorov DG, Sorokin PB, Sakai S, Entani S, Ohtomo M, Matsumoto Y, Naramoto H (2012) J Phys Chem Lett 3:2003

    Google Scholar 

  46. Roskop L, Fedorov DG, Gordon MS (2013) Mol Phys 111:1622

    Article  CAS  Google Scholar 

  47. Okiyama Y, Tsukamoto T, Watanabe C, Fukuzawa K, Tanaka S, Mochizuki Y (2013) Chem Phys Lett 566:25

    Article  CAS  Google Scholar 

  48. Sekino H, Matsumura N, Sengoku Y (2007) Comput Lett 3:423

    Article  CAS  Google Scholar 

  49. Gao Q, Yokojima S, Kohno T, Ishida T, Fedorov DG, Kitaura K, Fujihira M, Nakamura S (2007) Chem Phys Lett 445:331

    Article  CAS  Google Scholar 

  50. Gao Q, Yokojima S, Fedorov DG, Kitaura K, Sakurai M, Nakamura S (2010) J Chem Theory Comput 6:1428

    Article  CAS  Google Scholar 

  51. Fedorov DG, Kitaura K (2007) J Comput Chem 28:222

    Article  CAS  Google Scholar 

  52. Fedorov DG, Kitaura K (2012) J Phys Chem A 116:704

    Article  CAS  Google Scholar 

  53. Mochizuki Y, Fukuzawa K, Kato A, Tanaka S, Kitaura K, Nakano T (2005) Chem Phys Lett 410:247

    Article  CAS  Google Scholar 

  54. Ishikawa T, Mochizuki Y, Amari S, Nakano T, Tokiwa H, Tanaka S, Tanaka K (2007) Theor Chem Acc 118(5–6):937

    Article  CAS  Google Scholar 

  55. Green MC, Fedorov DG, Kitaura K, Francisco JS, Slipchenko LV (2013) J Chem Phys 138:074111

    Article  Google Scholar 

  56. Nakano T, Kaminuma T, Sato T, Fukuzawa K, Akiyama Y, Uebayasi M, Kitaura K (2002) Chem Phys Lett 351:475

    Article  CAS  Google Scholar 

  57. Kitaura K, Sugiki SI, Nakano T, Komeiji Y, Uebayasi M (2001) Chem Phys Lett 336(1,2):163

    Article  CAS  Google Scholar 

  58. Nagata T, Brorsen K, Fedorov DG, Kitaura K, Gordon MS (2011) J Chem Phys 134:124115

    Article  Google Scholar 

  59. Nagata T, Fedorov DG, Kitaura K (2009) Chem Phys Lett 475:124

    Article  CAS  Google Scholar 

  60. Nagata T, Fedorov DG, Kitaura K (2012) Chem Phys Lett 544:87

    Article  CAS  Google Scholar 

  61. Fedorov DG, Ishida T, Uebayasi M, Kitaura K (2007) J Phys Chem A 111:2722

    Article  CAS  Google Scholar 

  62. Fedorov DG, Alexeev Y, Kitaura K (2011) J Phys Chem Lett 2:282

    Article  CAS  Google Scholar 

  63. Komeiji Y, Nakano T, Fukuzawa K, Ueno Y, Inadomi Y, Nemoto T, Uebayasi M, Fedorov DG, Kitaura K (2003) Chem Phys Lett 372:342

    Article  CAS  Google Scholar 

  64. Komeiji Y, Ishikawa T, Mochizuki Y, Yamataka H, Nakano T (2009) J Comput Chem 30:40

    Article  Google Scholar 

  65. Fujita T, Watanabe H, Tanaka S (2009) J Phys Soc Jpn 78:104723

    Article  Google Scholar 

  66. Fujita T, Nakano T, Tanaka S (2011) Chem Phys Lett 506:112

    Article  CAS  Google Scholar 

  67. Brorsen KR, Minezawa N, Xu F, Windus TL, Gordon MS (2012) J Chem Theory Comput 8:5008

    Article  CAS  Google Scholar 

  68. Nakata H, Nagata T, Fedorov DG, Yokojima S, Kitaura K, Nakamura S (2013) J Chem Phys 138:164103

    Article  Google Scholar 

  69. Sato M, Yamataka H, Komeiji Y, Mochizuki Y, Ishikawa T, Nakano T (2008) J Am Chem Soc 130:2396

    Article  CAS  Google Scholar 

  70. Sato M, Yamataka H, Komeiji Y, Mochizuki Y, Nakano T (2010) Chem Eur J 16:6430

    Article  CAS  Google Scholar 

  71. Lange AW, Voth GA (2013) J Chem Theory Comput 9(9):4018. doi:10.1021/ct400516x

    Article  CAS  Google Scholar 

  72. Xie W, Orozco M, Gao J, Truhlar DG (2009) J Chem Theory Comput 5:459

    Google Scholar 

  73. Ufimtsev IS, Luehr N, Martinez TJ (2011) J Chem Theory Comput 2:1789

    CAS  Google Scholar 

  74. Kacar G, Atilgan C, Özen AS (2010) J Phys Chem C 114:370

    Article  CAS  Google Scholar 

  75. Nagaoka M, Ohta Y, Hitomi H (2007) Coord Chem Rev 251:2522

    Article  CAS  Google Scholar 

  76. Elliott JA, Paddison SJ (2007) Phys Chem Chem Phys 9:2602

    Article  CAS  Google Scholar 

  77. Karttunen M, Vattulainen I, Lukkarinen A (2004) Novel methods in soft matter simulations. Springer, Berlin

    Book  Google Scholar 

  78. Morales G, Martinez R (2009) J Phys Chem A 113:8683

    Article  CAS  Google Scholar 

  79. Zade SS, Bendikov M (2007) Chem Eur J 13:3688

    Article  CAS  Google Scholar 

  80. Suhai S (1980) J Chem Phys 73:3843

    Article  CAS  Google Scholar 

  81. Hirata S (1998) Phys Rev B 57:11994

    Article  CAS  Google Scholar 

  82. Aoki Y, Imamura A, Sasaki T (1988) Bull Chem Soc Jpn 61:1063

    Article  CAS  Google Scholar 

  83. Hirata S (2009) Phys Chem Chem Phys 11:8397

    Article  CAS  Google Scholar 

  84. Moscatelli D, Cavallotti C, Morbidelli M (2006) Macromolecules 39:9641

    Article  CAS  Google Scholar 

  85. Xie W, Song L, Truhlar DG, Gao J (2008) J Chem Phys 128:234108

    Article  Google Scholar 

  86. Hratchian HP, Parandekar PV, Raghavachari K, Frisch MJ, Vreven T (2008) J Chem Phys 128:034107

    Article  Google Scholar 

  87. Mayhall NJ, Raghavachari K, Hratchian HP (2010) J Chem Phys 132:114107

    Article  Google Scholar 

  88. Baker J, Kessi A, Delley B (1996) J Chem Phys 105:192

    Article  CAS  Google Scholar 

  89. Nagata T, Fedorov DG, Kitaura K (2010) Chem Phys Lett 492:302

    Article  CAS  Google Scholar 

  90. Yamaguchi Y, Schaefer HF III, Osamura Y, Goddard J (1994) A new dimension to quantum chemistry: analytical derivative methods in ab initio molecular electronic structure theory. Oxford University Press, New York

    Google Scholar 

  91. Handy NC, Schaefer HF III (1984) J Chem Phys 81:5031

    Article  CAS  Google Scholar 

  92. Ochsenfeld C, Gordon MS (1997) Chem Phys Lett 270:399

    Article  CAS  Google Scholar 

  93. Clayden J, Greeves N, Warren S, Wothers P (2001) Organic chemistry. Oxford University Press, New York

    Google Scholar 

  94. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus TL, de Jong WA (2010) Comput Phys Commun 181:1477

    Article  CAS  Google Scholar 

  95. Wang J, Cieplak P, Kollman PA (2000) J Comput Chem 21:1049

    Article  CAS  Google Scholar 

  96. Schmidt NW, Baldridge KK, Baldridge JA, Boatz JA, Elbert ST, Gordon MS, Jensen JJ, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  97. Fedorov DG, Kitaura K (2004) J Chem Phys 120(15):6832

    Article  CAS  Google Scholar 

  98. Fedorov DG, Olson RM, Kitaura K, Gordon MS, Koseki S (2004) J Comput Chem 25:872

    Article  CAS  Google Scholar 

  99. Andersen HC (1983) J Comput Phys 52:24

    Article  CAS  Google Scholar 

  100. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, New York

    Google Scholar 

  101. Benoit D, Hawker CJ, Huang EE, Lin Z, Russell TP (2000) Macromolecules 33:1505

    Article  CAS  Google Scholar 

  102. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  Google Scholar 

  103. Fedorov DG, Kitaura K (2006) Theoretical development of the fragment molecular orbital (FMO) method, chap. 1. Elsevier, Amsterdam, pp 3–38

Download references

Acknowledgments

We thank late Dr. Takeshi Nagata for helpful discussions about the FMO analytic energy gradient. This work was in part supported by the Next Generation Super Computing Project, Nanoscience Program (MEXT, Japan) and Computational Materials Science Initiative (CMSI, Japan). Most calculations were performed on TSUBAME2.0 at the Global Scientific Information and Computing Center of Tokyo Institute of Technology. We also thank the RIKEN Integrated Cluster of Clusters (RICC) at RIKEN and Research Center for Computational Science (Okazaki, Japan) for the computer resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroya Nakata.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (f 140 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakata, H., Fedorov, D.G., Yokojima, S. et al. Derivatives of the approximated electrostatic potentials in unrestricted Hartree–Fock based on the fragment molecular orbital method and an application to polymer radicals. Theor Chem Acc 133, 1477 (2014). https://doi.org/10.1007/s00214-014-1477-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1477-6

Keywords

Navigation