Skip to main content
Log in

Serratia sp., an endophyte of Mimosa pudica nodules with nematicidal, antifungal activity and growth-promoting characteristics

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In the present study, the nematicidal activity of an isolated strain of Mimosa pudica nodules was evaluated against the Nacobbus aberrans (J2) phytonymatodes with a mortality of 88.8%, while against the gastrointestinal nematode Haemonchus contortus (L3) and free-living Panagrellus redivivus was 100%. The ability to inhibit the growth of phytopathogenic fungi Fusarium sp., and Alternaria solani, as well as the oomycete Phytophthora capsici, this antifungal activity may be related to the ability to produce cellulases, siderophores and chitinases by this bacterial strain. Another important finding was the detection of plant growth promoter characteristics, such as auxin production and phosphate solubilization. The strain identified by sequences of the 16S and rpoB genes as Serratia sp. is genetically related to Serratia marcescens and Serratia nematodiphila. The promoter activity of plant growth, antifungal and nematicide of the Serratia sp. strain makes it an alternative for the biocontrol of fungi and nematodes that affect both the livestock and agricultural sectors, likewise, candidate as a growth-promoting bacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilar ML, Quintero MMT, de Mendoza GP, López AME, Liébano HE, Torres HG, González CJM, Cid IV (2014) Evaluation of predation of the mite Lasioseius penicilliger (Aracnida: Mesostigmata) on Haemonchus contortus and bacterial feeding nematodes. J Helmintol 88:20–23

    Article  Google Scholar 

  • Aguilar ML, de Mendoza GP, Tawfeeq AL, López AM, Gómez RO, Villar LE, Reyes GD (2020) Using molecular techniques applied to beneficial microorganisms as biotechnological tools for controlling agricultural plant pathogens and pest. In: Sharma V, Salwan R, Tawfeeq Al-ni LK (eds) Molecular Aspects of Plant Benefical Microbes in Agriculture, 1stst edn edn. Elsevier, Amsterdam, pp 333–349

    Chapter  Google Scholar 

  • Almaghrabi OA, Massoud SI, Abdelmoneim TS (2013) Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J B S 20:57–61. https://doi.org/10.1016/j.sjbs.2012.10.004

    Article  Google Scholar 

  • Anderson MT, Mitchell LA, Zhao L, Mobley HLT (2017) Capsule production and glucose metabolism dictate fitness Turing Serratia marcescens bacteremia. mBio 8:e00740–e817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartnicki-Garcia S (1968) Cell wall chemistry, morphogenesis, and taxonomy of fungi. Ann Rev Microbio 22:87–108

    Article  CAS  Google Scholar 

  • Beltrán PM (2015) Phosphate solubilization as a microbial strategy for promoting plant growth. Corpoica Cien Tecnol Agropecu 15:101–113. https://doi.org/10.21930/rcta.vol15_num1_art:401

    Article  Google Scholar 

  • Bird AF, Bird J (1991) The Egg. The structure of nematodes, 2nd edn. Elsevier, London, pp 7–43

    Book  Google Scholar 

  • Caballero MJ, Onofre LJ, Estrada De Los SP, Martínez AL (2007) The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl Environ Microbiol 73:5308–5319. https://doi.org/10.1128/AEM.00324-07

    Article  CAS  Google Scholar 

  • Carbonell T, Della CH, Yano T, Darini ALC, Levy CE, Fonseca BAL (2000) Clinical relevance and virulence factors of pigmented Serratia marcescens. FEMS Immunol Med Microbiol 28:143–149

    Article  CAS  PubMed  Google Scholar 

  • Carder JH (1986) Detection and quantitation of cellulase by Congo red staining of substrates in a cup-plate diffusion assay. Anal Biochem 153:75–79

    Article  CAS  PubMed  Google Scholar 

  • Castillo P, Stanley J, Inserra RN, Manzanilla LR (2012) Pratylenchidae-the lesión nematodes. pp. 411–478. In: Manzanilla-López RH, Marban-Mendoza N (eds) Practical Plant Nematology. Biblioteca Básica de Agricultura, México, p 883

    Google Scholar 

  • Chandni G, Sourav B, Arijit D (2012) Assessment of process parameters influencing the enhanced production of prodigiosin from Serratia marcescens and evaluation of its antimicrobial, antioxidant and dyeing potentials. Malays J Microbiol 18:116–122

    Google Scholar 

  • Chen L, Jiang H, Cheng Q, Chen J, Wu G, Kumar A, Sun M, Liu Z (2015) Enhanced nematicidal potential of the chitinase pachi from Pseudomonas aeruginosa in association with Cry21Aa. Sci Rep 5:14395. https://doi.org/10.1038/srep14395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chun Su, Liu Y, Sun Y, Li Z (2017) Complete genome sequence of Serratia sp. YD25 (KCTC 42987) presenting strong antagonistic activities to various pathogenic fungi and bacteria. J Biotechnol 245:9–13. https://doi.org/10.1016/j.jbiotec.2017.01.011

    Article  CAS  Google Scholar 

  • De Lara R, Castro T, Castro J, Castro G (2007) Nematode culture of Panagrellus redivivus (Goodey, 1945) with Spirulina sp., enriched oatmeal. Rev Biol Mar Oceanogr 42:29–36

    Google Scholar 

  • García ON, Aguilar ML, de Mendoza GP, López AME, Bautista GC, González GR (2015) In vitro predatory activity of Lasioseius penicilliger (Arachnida: Mesostigmata) against three nematodes species: Teladorsagia circumcincta, Meloidogyne sp. and Caenorhabditis elegans. Veterinaria México OA 2:1–8

    Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1–15. https://doi.org/10.6064/2012/963401

    Article  Google Scholar 

  • Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulani C, Sourav Bhattacharya S, Arijit Das A (2012) Assessment of process parameters influencing the enhanced production of prodigiosin from Serratia marcescens and evaluation of its antimicrobial, antioxidant and dyeing potentials. Malays J Microbiol 8:116–122. https://doi.org/10.21161/mjm.03612

    Article  CAS  Google Scholar 

  • Hegazy MI, Salama ASA, El-Ashry RM, Othman AEI (2019) Serratia marcescens and Pseudomonas aeruginosa are promising candidates as biocontrol agents against root-knot nematodes (Meloidogyne spp.). Middle East J Agric Res 8:828–838

    Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132

    Chapter  Google Scholar 

  • Manzanilla LRH, Costilla MA, Doucet M, Franco J, Inserra RN, Lehman PS, Cid del Prado VI, Souza RM, Evans K (2002) The genus Nacobbus thorne & allen, 1944 (Nematoda: Pratylenchidae). Systematics, distribution, biology and management. Nematropica 32:149–227

    Google Scholar 

  • Mercer CF, Greenwood DR, Grant JL (1992) Effect of plant and microbial chitinases on the eggs and juveniles of Meloidogyne hapla Chitwood (Nematoda: Tylenchida). Nematologica 38:227–236. https://doi.org/10.1163/187529292X00199

    Article  Google Scholar 

  • Miller PM, Sands DC (1977) Effects of hydroclytic enzymes on plant-parasitic nematodes. J Nematol 9:192–197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mollet C, Drancourt M, Raoult D (1997) rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol 26:1005–1011. https://doi.org/10.1046/j.1365-2958.1997.6382009.x

    Article  CAS  PubMed  Google Scholar 

  • Monreal J, Reese ET (1969) The Chitinase of Serratia marcescens. Can J Microbiol 15:689–696. https://doi.org/10.1139/m69-122

    Article  CAS  PubMed  Google Scholar 

  • Moon C, Yong-Su S, Sin-Hyoung H, Seung-Hee C, Woo-Jin J (2017) Antifungal activity and patterns of N-acetyl-chitooligosaccharide degradation via chitinase produced from Serratia marcescens PRNK-1. Microb Pathog 113:218–224

    Article  CAS  PubMed  Google Scholar 

  • Nicol JM, Turner SJ, Coyne DL, den Nijs L, Hockland SMaafi ZT (2011) Key nematodes threatening major agricultural crops of importance worldwide. pp. 21–44. In: Jones JT, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer, Heidelberg, p 557

    Google Scholar 

  • Paiva G, Proença DN, Francisco R, Verissimo P, Santos SS, Fonseca L, Abrantes IMO, Morais PV (2013) Nematicidal bacteria associated to pinewood nematode produce extracellular proteases. PLoS ONE 8:1–11. https://doi.org/10.1371/journal.pone.0079705

    Article  CAS  Google Scholar 

  • Pineda AJ, Sánchez VJ, González CM, Zamilpa A, López AM, Cuevas PE, de Mendoza GP, Aguilar ML (2017) The edible mushroom Pleurotus djamor produces metabolites with lethal activity against the parasitic nematode Haemonchus contortus. J Med Food 20:1184–1192. https://doi.org/10.1089/jmf.2017.0031[Epub 2017 Aug 2]

    Article  CAS  Google Scholar 

  • Rahman A, Siteou I, Tang SY, Hashiidoko Y (2010) Salkowski’s reagent test as a primary screening index for functionalities of rhizobacteria isolated from wild dipterocarp saplings growing naturally on medium-strongly acidic tropical Peat soil. Biosci Biotechnol Biochem 74:2202–2208. https://doi.org/10.1271/bbb.100360

    Article  CAS  PubMed  Google Scholar 

  • Rahul S, Chandrashekhar P, Hemant B, Chandrakant N, Shinde LS, Patil SP (2014) Nematicidal activity of microbial pigmento from Serratia marcescens. Nat Prod Res 28:1399–1404. https://doi.org/10.1080/14786419.2014.904310

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez MR, de Mendoza GP, Aguilar ML, López AME, Gamboa AM, Hanako RS, Reyes EM, García RGV (2018) In vitro lethal activity of the nematophagous fungus Clonostachys rosea (Ascomycota: Hypocreales) against nematodes of five different taxa. Biomed Res Int 2018:3501827. https://doi.org/10.1155/2018/3501827

    Article  CAS  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sánchez CR, Tapia VI, Batista GR, Méndez SE, Sánchez CM, Leija A, Lira RV, Hernández G, Wong VA, Folch MJ (2019) Isolation and characterization of endophytes from nodules of Mimosa pudica with biotechnological potencial. Microbiol Res 218:76–86

    Article  Google Scholar 

  • SAS, Institute. (1998) Language guide for personal computer release. 6.03 Edition. SAS Institute. Cary. North Carolina, USA. 1028.

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  • Suryawanshi R, Chandrashekhar P, Hemant B, Chandrakant N, LaxmikantSatish SP (2014) Nematicidal activity of microbialpigment from Serratia marcescens. Nat Prod Res 28:1399–1404. https://doi.org/10.1080/14786419.2014.904310

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tapia TY, García OF (2013) Phosphorus availability is a product of soil bacterial activity in oligotrophic ecosystems: a critical review. Terra Latinoam 31:231–242

    Google Scholar 

  • Tejera HB, Heydrich PM, Rojas BM (2013) Phosphate solubilization by rice associate Bacillus. Agron Mesoam 24:357–364

    Article  Google Scholar 

  • Veronico P, Gray LJ, Jones JT, Bazzicalupo P, Arbucci S, Cortese MR, Di Vito M, De Giorgi C (2001) Nematode chitin synthases: gene structure, expression and function in Caenorhabditis elegans and the plant parasitic nematode Meloidogyne artiellia. Mol Genet Genomics 266:28–34. https://doi.org/10.1007/s004380100513

    Article  CAS  PubMed  Google Scholar 

  • Villar LE, Reyes TB, Rojas MR, Gómez RO, Hernández AA, Zavaleta ME (2009) Respuesta hipersensitiva en el follaje de chile CM.334 resistente a Phytophthora capsici infectado con Nacobbus aberrans. Nematropica 39:143–155

    Google Scholar 

  • Vogel HJ (1956) A convenient growth medium for neurospora (medium N). Microbiol Genet Bull 13:42–43

    Google Scholar 

  • Vrain TC (1977) A technique for the collection of larvae of Meloidogyne spp., and a comparison of eggs and larvae as inocula. J Nematol 9:249–251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weisburg GW, Barns MS, Pelletier AD, Lane JD (1991) 16S Ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarei M, Aminzadeh S, Zolgharnein H, Safahieh A, Daliri M, Noghabi KA, Ghoroghi A, Motallebi A (2011) Characterization of a chitinase with antifungal activity from a native Serratia marcescens B4A. Braz J Microbiol 42:1017–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao D, Zhao H, Zhao D, Zhu X, Wang Y, Duan Y, Xuan Y, Chen L (2018) Isolation and identification of bacteria from rhizosphere soil and their effect on plant growth promotion and root-knot nematode disease. Biol Control 119:12–19

    Article  CAS  Google Scholar 

  • Zheng Z, Zheng J, Peng D, Sun M (2017) Complete genome sequence of Fictibacillus arsenicus G25–54, a strain with toxicity to nematodes. J Biotechnol 10(241):98–100. https://doi.org/10.1016/j.jbiotec.2016.11.025[Epub 2016 Nov 27]

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Consejo Nacional de Ciencia y Tecnología (CONACYT) and Secretaría de Educación Pública (SEP) from Mexico, for the financial support for the development of this research project number 179540. This research received partial financial support from “Proyectos Fiscales Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, INIFAP” (Project number 834432984).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liliana Aguilar-Marcelino or Arnoldo Wong-Villarreal.

Additional information

Communicated by Jorge Membrillo Hernandes.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méndez-Santiago, E.W., Gómez-Rodríguez, O., Sánchez-Cruz, R. et al. Serratia sp., an endophyte of Mimosa pudica nodules with nematicidal, antifungal activity and growth-promoting characteristics. Arch Microbiol 203, 549–559 (2021). https://doi.org/10.1007/s00203-020-02051-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-02051-2

Keywords

Navigation