Skip to main content

Advertisement

Log in

Ecophysiological characteristics of the nematophagous fungus, Plectosphaerella plurivora, with biocontrol potential on Nacobbus aberrans s.l. in tomato

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The plant-parasitic nematode, Nacobbus sp., is responsible for significant economic losses in horticultural production centers in Argentina and other countries in America, alone or in combination with other biotic and abiotic factors. Although the genus’ distribution is restricted to the American continent, it has quarantine importance and is subject to international legislation to prevent its spread to other regions. The management of phytoparasitic nematodes using biological control strategies is a promising eco-compatible alternative, allowing for sustainability of the crop horticultural system. Firstly, this study ecophysiologically characterized Plectosphaerella plurivora SRA14, a strain with nematophagous activity on N. aberrans s.l. This fungal strain developed in vitro under a wide temperature range (20–30 °C), but the highest levels of water stress (Ψ: -7 and -10 Mpa; aW: 0.95 and 0.93) inhibited its growth. While the production of extracellular enzymes by this strain was low, P. plurivora SRA14 was able to develop in the rhizosphere and endorhizosphere of the tomato and basil crops without affecting the plant vigor parameters or producing phytotoxicity signs. Secondly, this study evidenced the biocontrol activity of P. plurivora SRA14 on N. aberrans s.l. populations in tomato, implanted into both sterile (artificially inoculated) and naturally infested soils via greenhouse pot experiments. The results of this work revealed for the first time the potential of P. plurivora SRA14 as a biological control agent of the phytoparasitic nematode N. aberrans s.l. in horticultural crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abd-Elgawad, M. M. M., & Askary, T. H. (2015). Impact of phytonematodes on agriculture economy. In T. H. Askary & P. R. P. Martinelli (Eds.), Biocontrol agents of phytonematodes (pp. 1–49). CABI.

    Google Scholar 

  • Atkins, S. D., Clark, I. M., Sosnowska, D., Hirsch, P. R., & Kerry, B. R. (2003). Detection and quantification of Plectosphaerella cucumerina, a potential biological control agent of potato cyst nematodes, by using conventional PCR, real-time PCR, selective media, and baiting. Applied and Environmental Microbiology, 69(8), 4788–4793. https://doi.org/10.1128/AEM.69.8.4788-4793.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atlas, R. M. (2005). Handbook of Media for Environmental Microbiology (2nd ed.). CRC Press.

    Book  Google Scholar 

  • Ayliffe, M., Periyannan, S. K., Feechan, A., Dry, I., Schumann, U., Wang, M.-B., Pryor, A., & Lagudah, E. (2013). A Simple Method for Comparing Fungal Biomass in Infected Plant Tissues. Molecular Plant-Microbe Interactions, 26(6), 658–667. https://doi.org/10.1094/MPMI-12-12-0291-R

    Article  CAS  PubMed  Google Scholar 

  • Barra, P., Etcheverry, M., & Nesci, A. (2015). Improvement of the insecticidal capacity of two Purpureocillium lilacinum strains against Tribolium confusum. Insects, 6(1), 206–223. https://doi.org/10.3390/insects6010206

    Article  PubMed  PubMed Central  Google Scholar 

  • Batista, A. C., & da Silva, M. H. (1959). Uma nova doença fúngica de peixe ornamental. Anais Da Sociedade De Biologia De Pernambuco, 16, 153–159.

    Google Scholar 

  • Bonants, P. J., Fitters, P. F., Thijs, H., den Belder, E., Waalwijk, C., & Henfling, J. W. (1995). A basic serine protease from Paecilomyces lilacinus with biological activity against Meloidogyne hapla eggs. Microbiology, 141(4), 775–784. https://doi.org/10.1099/13500872-141-4-775

    Article  CAS  PubMed  Google Scholar 

  • Braga, F. R., Araújo, J. V., Freitas Soares, F. E., Araujo, J. M., de Oliveira Tavela, A., de Carvalho, L. M., de Mello, I. N. K., de Paula, A. T., Lelis, R., & Queiroz, J. H. (2013). Interaction of the nematophagous fungus Duddingtonia flagrans on Amblyomma cajannense engorged females and enzymatic characterisation of its chitinase. Biocontrol Science and Technology, 23(5), 584–594. https://doi.org/10.1080/09583157.2013.789481

    Article  Google Scholar 

  • Cabrera Hidalgo, A. J., Valdovinos Ponce, G., Mora Aguilera, G., Rebollar Alviter, A., & Marbán Mendoza, N. (2014). Occurrence of Nacobbus aberrans in horticultural crops in northwestern Michoacan, Mexico. Nematropica, 44(1), 101–117.

    Google Scholar 

  • Cannon, P. F., Buddie, A. G., Bridge, P. D., de Neergaard, E., Lübeck, M., & Askar, M. M. (2012). Lectera, a new genus of the Plectosphaerellaceae for the legume pathogen Volutella colletotrichoides. MycoKeys, 3, 23–36. https://doi.org/10.3897/MYCOKEYS.3.3065

    Article  Google Scholar 

  • Carlucci, A., Raimondo, M. L., Santos, J., & Phillips, A. J. L. (2012). Plectosphaerella species associated with root and collar roots of horticultural crops in southern Italy. Persoonia, 28, 34–48. https://doi.org/10.3767/003158512X638251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrieri, R., Pizzolongo, G., Carotenuto, G., Tarantino, P., & Lahoz, E. (2014). First report of necrotic leaf spot caused by Plectosphaerella cucumerina on lamb’s lettuce in southern Italy. Plant Disease, 98(7), 998. https://doi.org/10.1094/PDIS-10-13-1090-PDN

    Article  CAS  PubMed  Google Scholar 

  • Cristóbal, A. J., Cid Del Prado, V. I., Sánchez, G. P., Marbán-Mendoza, N., Manzanilla, L. R. H., & Mora-Aguilera, G. (2001). Alteraciones nutrimentales en tomate (Lycopersicon esculentum Mill.) por efecto de Nacobbus aberrans. Nematropica, 31(2), 219–236.

    Google Scholar 

  • D’Amico, M., Frisullo, S., & Cirulli, M. (2008). Endophytic fungi occurring in fennel, lettuce, chicory, and celery–commercial crops in southern Italy. Mycological Research, 112(1), 100–107. https://doi.org/10.1016/J.MYCRES.2007.11.007

    Article  PubMed  Google Scholar 

  • Dallyn, H., & Fox, A. (1980). Spoilage of material of reduced water activity by xerophilic fungi. In G. H. Gould & E. L. Corry (Eds.), Society of Applied Bacteriology Technical Series (pp. 129–139). Academic Press.

    Google Scholar 

  • De Oliveira Bosco, M. R., Bosco de Oliveira, A., Ferreyra Hernandez, F. F., & de Lacerda, C. F. (2009). Efeito do NaCl sobre o crescimento, fotossíntese e relações hídricas de plantas de berinjela. Revista Ceres, 56(3), 296–302.

    Google Scholar 

  • Domsch, K. H., Gams, W., & Anderson, T. H. (2007). Compendium of soil fungi (2nd ed.). IHW-Verlag.

    Google Scholar 

  • Doucet, M. E. (1989). The genus Nacobbus Thorne Allen, 1944 in Argentina. 1. Study of a population of N. aberrans (Thorne, 1935) Thorne & Allen, 1944 on Chenopodium album L. from Rio Cuarto, Province of Cordoba. Revue de Nématologie, 12(1), 17–26.

    Google Scholar 

  • Doucet, M. E., & Lax, P. (2005). El género Nacobbus Thorne & Allen, 1944 en la Argentina. 6. La especie N. aberrans (Thorne, 1935) Thorne & Allen, 1944 (Nematoda: Tylenchida) y su relación con la agricultura. Academia Nacional de Agronomía y Veterninaria, LIX, 45.

    Google Scholar 

  • Duc, P. M., Hatai, K., Kurata, O., Tensha, K., Yoshitaka, U., Yaguchi, T., & Udagawa, S. I. (2009). Fungal infection of mantis shrimp (Oratosquilla oratoria) caused by two anamorphic fungi found in Japan. Mycopathologia, 167(5), 229–247. https://doi.org/10.1007/S11046-008-9174-4/TABLES/7

    Article  PubMed  Google Scholar 

  • Durán, P., Thiergart, T., Garrido-Oter, R., Agler, M., Kemen, E., Schulze-Lefert, P., & Hacquard, S. (2018). Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell, 175(4), 973–983. https://doi.org/10.1016/J.CELL.2018.10.020

    Article  PubMed  PubMed Central  Google Scholar 

  • EPPO (2022) European and Mediterranean Plant Protection Organization, A1 List of pests recommended for regulation as quarantine pests. Available at: https://www.eppo.int/ACTIVITIES/plant_quarantine/A1_list. Accessed March 23 2023.

  • García, E., Alonso, A., Platas, G., & Sacristán, S. (2013). The endophytic mycobiota of Arabidopsis thaliana. Fungal Diversity, 60(1), 71–89. https://doi.org/10.1007/S13225-012-0219-0

    Article  Google Scholar 

  • Garita, S. A., Bernardo, V. F., Gonzalez, M., Ripodas, J. I., Arango, M. C., & Ruscitti, M. (2021). The false root-knot nematode: Modification of the root anatomy and alteration of the physiological performance in tomato plants. Rhizosphere, 20, 1–5.

    Article  Google Scholar 

  • Garita, S. A. (2019). Herramientas biológicas. Un aporte para elaboración de un plan de manejo de Nacobbus aberrans.Tesis doctoral. Universidad Nacional de La Plata, Argentina.

  • Giraldo, A., & Crous, P. W. (2019). Inside Plectosphaerellaceae. Studies in Mycology, 92, 227–286. https://doi.org/10.1016/j.simyco.2018.10.005

    Article  CAS  PubMed  Google Scholar 

  • Giraldo, A., Gené, J., Sutton, D. A., Wiederhold, N., & Guarro, J. (2017). New acremonium-like species in the Bionectriaceae and Plectosphaerellaceae. Mycological Progress, 16(4), 349–368. https://doi.org/10.1007/S11557-017-1271-7

    Article  Google Scholar 

  • Girardi, N. S., Sosa, A. L., Etcheverry, M. G., & Passone, M. A. (2022). In vitro characterization bioassays of the nematophagous fungus Purpureocillium lilacinum: Evaluation on growth, extracellular enzymes, mycotoxins and survival in the surrounding agroecosystem of tomato. Fungal Biology, 126(4), 300–307. https://doi.org/10.1016/J.FUNBIO.2022.02.001

    Article  CAS  PubMed  Google Scholar 

  • González, A. (2018). Image J: una herramienta indispensable para medir el mundo biológico. Folium 1(9), 6–17. https://botanicaargentina.org.ar/wp-content/uploads/2018/09/AR-Folium-Issu.pdf

  • Gortari, M. C., & Hours, R. A. (2008). Fungal chitinases and their biological role in the antagonism onto nematode eggs. A Review. Mycological Progress, 7(4), 221–238. https://doi.org/10.1007/s11557-008-0571-3

    Article  Google Scholar 

  • Götz, M., Nirenberg, H., Krause, S., Wolters, H., Draeger, S., Buchner, A., Lottmann, J., Berg, G., & Smalla, K. (2006). Fungal endophytes in potato roots studied by traditional isolation and cultivation-independent DNA-based methods. FEMS Microbiology Ecology, 58(3), 404–413. https://doi.org/10.1111/J.1574-6941.2006.00169.X

    Article  PubMed  Google Scholar 

  • Gräfenhan, T., Schroers, H. J., Nirenberg, H. I., & Seifert, K. A. (2011). An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in Cosmospora, Acremonium, Fusarium, Stilbella and Volutella. Studies in Mycology, 68, 79–113. https://doi.org/10.3114/SIM.2011.68.04

    Article  PubMed  PubMed Central  Google Scholar 

  • Grum-Grzhimaylo, A. A., Debets, A. J. M., van Diepeningen, A. D., Georgieva, M. L., & Bilanenko, E. N. (2013). Sodiomyces alkalinus, a new holomorphic alkaliphilic ascomycete within the Plectosphaerellaceae. Persoonia: Molecular Phylogeny and Evolution of Fungi, 31, 147–158. https://doi.org/10.3767/003158513X673080

    Article  CAS  Google Scholar 

  • Grum-Grzhimaylo, A. A., Georgieva, M. L., Bondarenko, S. A., Debets, A. J. M., & Bilanenko, E. N. (2016). On the diversity of fungi from soda soils. Fungal Diversity, 76(1), 27–74. https://doi.org/10.1007/S13225-015-0320-2/FIGURES/33

    Article  Google Scholar 

  • Hyde, K. D., Nilsson, R. H., Alias, S. A., et al. (2014). One stop shop: Backbones trees for important phytopathogenic genera: I. Fungal Diversity, 67(1), 21–125. https://doi.org/10.1007/S13225-014-0298-1/FIGURES/22

    Article  Google Scholar 

  • Jacobs, H. (2000). Development of a fungal biological control agent for potato cyst nematodes. PhD Thesis. University of Luton, Luton, United Kingdom.

  • Jones, J. T., Haegeman, A., Danchin, E. G., Gaur, H. S., Helder, J., Jones, M. G., Kikuchi, T., Manzanilla-López, R., Palomares-Rius, J. E., Wesemael, W. M., & Perry, R. N. (2013). Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 14(9), 946–961. https://doi.org/10.1111/mpp.12057

    Article  PubMed  PubMed Central  Google Scholar 

  • Junker, C., Draeger, S., & Schulz, B. (2012). A fine line - endophytes or pathogens in Arabidopsis thaliana. Fungal Ecology, 5(6), 657–662. https://doi.org/10.1016/J.FUNECO.2012.05.002

    Article  Google Scholar 

  • Khan, A., Williams, K., Molloy, M. P., & Nevalainen, H. (2003). Purification and characterization of a serine protease and chitinases from Paecilomyces lilacinus and detection of chitinase activity on 2D gels. Protein Expression and Purification, 32(2), 210–220. https://doi.org/10.1016/j.pep.2003.07.007

    Article  CAS  PubMed  Google Scholar 

  • Kooliyottil, R., Dandurand, L.-M., Govindan, B. N., & Knudsen, G. R. (2016). Microscopy Method to Compare Cyst Nematode Infection of Different Plant Species. Advances in Bioscience and Biotechnology, 7, 311–318. https://doi.org/10.4236/abb.2016.76029

    Article  CAS  Google Scholar 

  • Lax, P., Becerra, A. G., Soteras, F., Cabello, M., & Doucet, M. E. (2011). Effect of the arbuscular mycorrhizal fungus Glomus intraradices on the false root-knot nematode Nacobbus aberrans in tomato plants. Biology and Fertility of Soils, 47(5), 591–597. https://doi.org/10.1007/s00374-010-0514-4

    Article  Google Scholar 

  • Lax, P., Passone, M. A., Becerra, A. G., Sosa, A. L., Ciancio, A., Finetti-Sialer, M. M., & Rosso, L. C. (2022). Sustainable strategies for management of the “false root-knot nematode” Nacobbus spp. Frontiers in Plant Science, 13, 1046315. https://doi.org/10.3389/fpls.2022.1046315

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Llorca, L. V., Maciá-Vicente, J. G., & Jansson, J. B. (2008). Mode of action and interactions of nematophagous fungi. In A. Ciancio & K. G. Mukerji (Eds.), Integrated management and biocontrol of vegetable and grain crop nematodes (pp. 51–76). Springer.

    Chapter  Google Scholar 

  • Magan, N. (2001). Physiological approaches to improving the ecological fitness of fungal bicontrol agents. In T. M. Butt, C. Jackson, & N. Magan (Eds.), Fungi as Biocontrol Agents (pp. 239–252). CAB International.

    Google Scholar 

  • Manzanilla-Lopez, R. H., Costilla, M. A., Doucet, M., Franco, J., Inserra, R. N., Lehman, P. S., et al. (2002). The genus Nacobbus Thorne & Allen, 1944 (Nematoda: Pratylenchidae): Systematics, distribution, biology and management. Nematropica, 32(2), 149–228.

    Google Scholar 

  • Manzanilla-López, R. H. (2010). Speciation within Nacobbus: Consilience or controversy? Nematology, 12, 321–334. https://doi.org/10.1163/138855409X12584547412734

    Article  Google Scholar 

  • Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugars’. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  • Muñoz-Barrios, A., Sopeña-Torres, S., Ramos, B., López, G., del Hierro, I., Díaz-González, S., González-Melendi, P., Mélida, H., Fernández-Calleja, V., Mixão, V., Martín-Dacal, M., Marcet-Houben, M., Gabaldón, T., Sacristán, S., & Molina, A. (2020). Differential expression of fungal genes determines the lifestyle of Plectosphaerella strains during Arabidopsis thaliana colonization. Molecular Plant-Microbe Interactions, 33(11), 1299–1314. https://doi.org/10.1094/MPMI-03-20-0057-R

    Article  PubMed  Google Scholar 

  • Okada, G., Nimura, Y., Sakata, T., et al. (1993). Acremonium alcalophilum, a new alkalophilic cellulolytic hyphomycete. Transactions of the Mycological Society of Japan, 34, 171–185.

    Google Scholar 

  • Park, J. O., Hargreaves, J. R., McConville, E. J., Stirling, G. R., Ghisalberti, E. L., & Sivasithamparam, K. (2004). Production of leucinostatins and nematicidal activity of Australian isolates of Paecilomyces lilacinus (Thom) Samson. Letters in Applied Microbiology, 38(4), 271–276. https://doi.org/10.1111/J.1472-765X.2004.01488.X

    Article  CAS  PubMed  Google Scholar 

  • Passone, M. A., Resnik, S. L., & Etcheverry, M. G. (2005). In vitro effect of phenolic antioxidants on germination, growth and aflatoxin B1 accumulation by peanut Aspergillus section Flavi. Journal of Applied Microbiology, 99(3), 682–691. https://doi.org/10.1111/j.1365-2672.2005.02661.x

    Article  CAS  PubMed  Google Scholar 

  • Ploganou, L. M. (2018). Caracterización de los daños producidos por Nacobbus aberrans en variedades comerciales de tomate y pimiento. Tesis de grado. Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Argentina.

  • Price, M. F., Wilkinson, I. D., & Gentry, L. O. (1982). Plate method for detection of phospholipase activity in Candida albicans. Sabouraudia, 20, 7–14.

    Article  CAS  PubMed  Google Scholar 

  • Raimondo, M. L., & Carlucci, A. (2018). Characterization and pathogenicity assessment of Plectosphaerella species associated with stunting disease on tomato and pepper crops in Italy. Plant Pathology, 67(3), 626–641. https://doi.org/10.1111/ppa.12766

    Article  CAS  Google Scholar 

  • Regaieg, H., Ciancio, A., Raouani, N. H., & Rosso, L. (2011). Detection and biocontrol potential of Verticillium leptobactrum parasitizing Meloidogyne spp. World Journal of Microbiology and Biotechnology, 27, 1615–1623. https://doi.org/10.1007/s11274-010-0615-0

    Article  CAS  Google Scholar 

  • Sosa, A. L., Rosso, L. C., Salusso, F. A., Etcheverry, M. G., & Passone, M. A. (2018). Screening and identification of horticultural soil fungi for their evaluation against the plant parasitic nematode Nacobbus aberrans. World Journal of Microbiology and Biotechnology, 34(5), 34–63. https://doi.org/10.1007/s11274-018-2441-8

    Article  CAS  Google Scholar 

  • Sosa, A. L., Girardi, N. S., & Passone, M. A. (2021). Formulation of fungal agents for the development of agricultural inputs to control phytoparasitic nematodes - a mini-review. Currents Trends in Microbiology, 15, 29–44.

    Google Scholar 

  • Stirling, R. G. (2014). In R. Cutts, A. Lainsbury, & L. Tsitlidze (Eds.), Biological control of plant parasitic nematodes (2nd ed.), CABI

  • Su, L., Deng, H., & Niu, Y. C. (2017). Phylogenetic analysis of Plectosphaerella species based on multi-locus DNA sequences and description of P. sinensis sp. nov. Mycological Progress, 16(8), 823–829. https://doi.org/10.1007/S11557-017-1319-8

    Article  Google Scholar 

  • Thiergart, T., Durán, P., Ellis, T., Vannier, N., Garrido-Oter, R., Kemen, E., Roux, F., Alonso-Blanco, C., Ågren, J., Schulze-Lefert, P., & Hacquard, S. (2020). Root microbiota assembly and adaptive differentiation among European Arabidopsis populations. Nature Ecology & Evolution, 4(1), 122–131. https://doi.org/10.1038/S41559-019-1063-3

    Article  Google Scholar 

  • Tikhonov, V. E., Lopez-Llorca, L. V., Salinas, J., & Jansson, H. B. (2002). Purification and characterization of chitinases from the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium. Fungal Genetics and Biology, 35(1), 67–78. https://doi.org/10.1006/fgbi.2001.1312

    Article  CAS  PubMed  Google Scholar 

  • Ton, J., & Mauch-Mani, B. (2004). Beta-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. The Plant Journal: For Cell and Molecular Biology, 38(1), 119–130. https://doi.org/10.1111/J.1365-313X.2004.02028.X

    Article  CAS  PubMed  Google Scholar 

  • Usami, T., & Katagiri, H. (2017). Pathogenicity of Plectosphaerella species on lettuce and susceptibility of lettuce cultivars. Journal of General Plant Pathology, 83(6), 366–372. https://doi.org/10.1007/S10327-017-0736-5

    Article  Google Scholar 

  • Xu, J., Xu, X. D., Cao, Y. Y., & Zhang, W. M. (2014). First report of greenhouse tomato wilt caused by Plectosphaerella cucumerina in China. Plant Disease, 98(1), 158. https://doi.org/10.1094/PDIS-05-13-0566-PDN

    Article  CAS  PubMed  Google Scholar 

  • Yu, Q., & Coosemans, J. (1998). Fungi associated with cysts of Globodera rostochiensis, G. pallida, and Heterodera schachtii; and egg masses and females of Meloidogyne hapla in Belgium. Phytoprotection, 79(2), 63–69. https://doi.org/10.7202/706135ar

    Article  Google Scholar 

  • Zhang, Z. Y., Chen, W. H., Zou, X., Han, Y. F., Huang, J. Z., Liang, Z. Q., & Deshmukh, S. K. (2019). Phylogeny and taxonomy of two new Plectosphaerella (Plectosphaerellaceae, Glomerellales) species from China. MycoKeys, 57, 47–60. https://doi.org/10.3897/mycokeys.57.36628.PMID:31423085;PMCID:PMC6694076

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, J., Bi, S., Chen, H., Chen, T., Yang, R., Li, M., Fu, Y., & Jia, A. Q. (2017). Anti-biofilm and antivirulence activities of metabolites from Plectosphaerella cucumerina against Pseudomonas aeruginosa. Frontiers in Microbiology, 8, 1–17. https://doi.org/10.3389/fmicb.2017.00769

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out by the grant from Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT), FONCYT-PICT/2020 N° 01560, 2021-2024, Consejo Nacional de Investigaciones Científicas y Técnicas RESOL-2022-1927-APN-DIR#CONICET, 2023-2025 and Secretaría de Ciencia y Técnica, Universidad Nacional de Río Cuarto (SECYT- UNRC), PPI-2019 Res. 161, 2020-2022.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived and designed the research; NG, AS, JLG and MP conducted experiments, and analyzed the data; all authors discussed the results; AP, AS, and NG wrote the article; all authors read and approved the manuscript.

Corresponding author

Correspondence to Natalia Girardi.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The authors declare they have no financial interests.

Human and animal rights

No human and/or animal participants were involved in this research.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girardi, N., Sosa, A.L., Loyola García, J. et al. Ecophysiological characteristics of the nematophagous fungus, Plectosphaerella plurivora, with biocontrol potential on Nacobbus aberrans s.l. in tomato. Eur J Plant Pathol 167, 867–881 (2023). https://doi.org/10.1007/s10658-023-02739-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-023-02739-3

Keywords

Navigation