Skip to main content
Log in

Application of equi-potential lines method for accurate definition of the deforming zone in the upper-bound analysis of forward extrusion problems

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Prediction of the optimal pressure is one of the objectives in the die design for the extrusion process. In this study, the concept of Equi-Potential Lines (EPLs) was applied for an accurate definition of the deforming zone in the upper-bound solution of the extrusion process. To implement the concept for the extrusion process, the initial and final shapes were considered and two different potentials were assigned to these. Then, the EPLs were drawn between the two shapes while minimizing the work path from the initial billet to the desired final shape. Bilinear, cubic Bezier, and polynomial curves were used for the definition of the deforming zone. It was shown that the coefficients of cubic Bezier curve could be replaced by the values obtained from the EPLs method. Moreover, accurate 3D streamlines representing material flow path in the deforming zone were obtained from the present method. Finally, forming pressures in the extrusion process were computed using the proposed geometry. To show the effectiveness of the proposed method, the estimated values were compared with experimental results. It was shown that the proposed method had a remarkable agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoshino S, Gunasekera JS (1980) An upper-bound solution for the extrusion of square section from round bar through converging dies. In: Proceedings of the 21st Machine Tool Design Research Conference 97

  2. Kiuchi M, Kishi H, Ishikawa M (1981) Study on non-symmetric extrusion and drawing. In: Proceedings of the 22nd International Machine Tool Design Research Conference, vol. 523

  3. Park YB, Yoon JH, Yang DY (1994) Finite element analysis of steady-state three-dimensional helical extrusion of twisted sections using recurrent boundary conditions. Int J Mech Sci 36(2):137–148

    Article  MATH  Google Scholar 

  4. Nagpal V, Altan T (1975) Analysis of the three dimension metal flow in extrusion of shapes with the use of dual stream functions, in: 3rd NAMRC Conference, Pittsburgh, PA

  5. Juneja BI, Prakash R (1975) An analysis for drawing and extrusion of polygonal sections. Int J Mach Tool Des Res 15:1–13

    Article  Google Scholar 

  6. Yang DY, Lee CH, Altan T (1978) Analysis of three dimensional extrusion sections through curved dies by conformal transformation. Int J Mech Sci 20(9):541–552

    Article  Google Scholar 

  7. Chitkara NR, Celik KF (2000) A generalized CAD/CAM solution to the three-dimensional off-centric extrusion of shaped sections: analysis. Int J Mech Sci 42:273–294

    Article  MATH  Google Scholar 

  8. Khalili Meybodi A, Assempour A, Farahani S (2012) A general methodology for bearing design in non-symmetric T-shaped sections in extrusion process. J Mater Process Technol 212:249–261

    Article  Google Scholar 

  9. Lee SR, Lee YK, Park CH, Yang DY (2002) A new method of preform design in hot forging by using electric field theory. Int J Mech Sci 44:773–792

    Article  MATH  Google Scholar 

  10. Xiaona W, Fuguo L (2009) A quasi-equi potential field simulation for preform designs of P/M superalloy disk. Chin J Aeronaut 22:81–86

    Article  Google Scholar 

  11. Tabatabaei SA, Faraji G et al (2013) Preform shape design in tube hydroforming process using equi-potential line method. Mater Manuf Process 28(3):260–264

    Article  Google Scholar 

  12. Tabatabaei SA, Shariat Panahi M et al (2013) Optimum design of preform geometry and forming pressure in tube hydroforming using the equi-potential lines method. Int J Adv Manuf Technol 69:2787–2792

    Article  Google Scholar 

  13. Cai J, Li F, Liu T (2011) A new approach of preform design based on 3D electrostatic field simulation and geometric transformation. Int J Adv Manuf Technol 56:579–588

    Article  Google Scholar 

  14. Abrinia K, Fazlirad A (2009) Three-dimensional analysis of shape rolling using a generalized upper bound approach. J Mater Process Technol 209:3264–3277

    Article  Google Scholar 

  15. Abrinia K, Makaremi M (2008) A new three-dimensional solution for the extrusions of sections with larger dimensions than the initial billet. J Mater Process Technol 205:259–271

    Article  Google Scholar 

  16. Ponalagusamy R, Narayanasamy R, Srinivasan P (2005) Design and development of streamlined extrusion dies a Bezier curve approach. J Mater Process Technol 161:375–380

    Article  Google Scholar 

  17. Drucker DC, Prager W, Greenberg HJ (1952) Extended limit design theorems for continuous media. Q J Mech Appl Math 9:381–389

    MATH  MathSciNet  Google Scholar 

  18. Feynman RP, Leighton RB, Sands M (1975) The Feynman lectures on physics. Am J Phys 33(9):750

    Article  Google Scholar 

  19. Ghorbani M, Abrinia K (2010) Theoretical and Experimental Analyses for the Forward Extrusion of Nonsymmetric Sections, Proceedings of the 36th International MATADOR Conference, pp 59–62

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Tabatabaei.

Appendices

Appendix A

1.1 Velocity field

The general velocity vector for any arbitrary point in the deforming region (Fig. 2) can be defined as follow [19]:

$$ \overrightarrow{V}=\frac{V_xi+{V}_yj+{V}_zk}{{\left({V_x}^2+{V_y}^2+{V_z}^2\right)}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}} $$
(11)

Using the procedure of [14], it can be shown that a kinematically admissible velocity field based on the deforming region (Eq. (5-d)) is given by:

$$ {V}_x=\frac{ ft}{h_t}{V}_z\kern0.5em ,\kern0.5em {V}_y=\frac{\mathit{\mathsf{g}}t}{h_t}{V}_z\kern0.5em ,\kern0.5em {V}_z=M\left(u,q,t\right) $$
(12)

Where M is a function obtained by considering compressibility conditions. Three-dimensional incompressibility relation is given by:

$$ \frac{\partial {V}_x}{\partial X}+\frac{\partial {V}_y}{\partial Y}+\frac{\partial {V}_z}{\partial Z}=0 $$
(13)

By using the introduced velocity field and after some manipulation (see Appendix B) and integration of the compressibility equation, the following equation is obtained for M [19]:

$$ M=\frac{C\left(u,q\right)}{\left({f}_u{\mathit{\mathsf{g}}}_q-{f}_q{\mathit{\mathsf{g}}}_u\right)+\frac{h_q}{h_t}\left({f}_t{\mathit{\mathsf{g}}}_u-{f}_u{\mathit{\mathsf{g}}}_t\right)+\frac{h_u}{h_t}\left({f}_q{\mathit{\mathsf{g}}}_t-{f}_t{\mathit{\mathsf{g}}}_q\right)} $$
(14)

Where C (u, q) is obtained from boundary condition at entry section (t = 0):

$$ C\left(u,q\right)={V}_0{\left[\left({f}_u{\mathit{\mathsf{g}}}_q-{f}_q{\mathit{\mathsf{g}}}_u\right)+\frac{h_q}{h_t}\left({f}_t{\mathit{\mathsf{g}}}_u-{f}_u{\mathit{\mathsf{g}}}_t\right)+\frac{h_u}{h_t}\left({f}_q{\mathit{\mathsf{g}}}_t-{f}_t{\mathit{\mathsf{g}}}_q\right)\right]}_{t=0} $$
(15)

By defining M(u, q, t), the velocity field is fully determined through the relation (12).

1.2 Upper-bound solution

The upper-bound value for extrusion power can be calculated as follow [19]:

$$ J={\dot{W}}_e+{\dot{W}}_x+{\dot{W}}_f+{\dot{W}}_i $$
(16)

Where \( {\dot{W}}_e \) is the power due to the velocity discontinuity at entrance section:

$$ {\dot{W}}_e=\frac{Y}{\sqrt{3}}{\displaystyle \iint \varDelta {V}_e\varDelta {S}_e=}\frac{Y}{\sqrt{3}}{\displaystyle \iint {{\left[{V_x}^2+{V_y}^2+{\left({V}_z-{V}_0\right)}^2\right]}^{\frac{1}{2}}}_{t=0}d{S}_e} $$
(17)

\( {\dot{W}}_x \) is the power due to velocity discontinuity at exit section:

$$ {\dot{W}}_x=\frac{Y}{\sqrt{3}}{\displaystyle \iint \varDelta {V}_x\varDelta {S}_x=}\frac{Y}{\sqrt{3}}{\displaystyle \iint {{\left[\left({V_x}^2+{V_y}^2+{\left({V}_z-{V}_0\left(\frac{A_e}{A_x}\right)\right)}^2\right)\right]}^{\frac{1}{2}}}_{t=1}d{S}_x} $$
(18)

A e and A x are the areas of inlet and outlet sections, respectively. Moreover, \( {\dot{W}}_f \), the power due to friction between working material and die surface is:

$$ {\dot{W}}_f=m\frac{Y}{\sqrt{3}}{\displaystyle \iint \varDelta {V}_f\varDelta {S}_f=m}\frac{Y}{\sqrt{3}}{\displaystyle \iint {{\left[\left({V_x}^2+{V_y}^2+{V_z}^2\right)\right]}^{\frac{1}{2}}}_{u=1}d{S}_f} $$
(19)

In \( {\dot{W}}_f \) calculations, m is the friction factor. Finally, \( {\dot{W}}_i \) the power due to internal deformation is calculated as follows:

$$ {\dot{W}}_i=\frac{2Y}{\sqrt{3}}{\displaystyle \iiint {\left[\left(\frac{{\varepsilon_{\dot{x}x}}^2+{\varepsilon_{\dot{y}y}}^2+{\varepsilon_{\dot{z}z}}^2}{2}\right)+{\varepsilon_{\dot{x}y}}^2+{\varepsilon_{\dot{y}z}}^2+{\varepsilon_{\dot{z}x}}^2\right]}^{\frac{1}{2}} dV} $$
(20)

The total extrusion pressure can be calculated as:

$$ \frac{P}{Y}=\frac{J}{ Y\pi {R}^2} $$
(21)

In relation (21), Y and R are the yield strength and radius of the billet material, respectively.

Appendix B

The incompressibility condition of the material in xyz coordinates system can be shown by dimensionless variables of u, q, and t as following:

$$ {\varepsilon}_{ii}=\frac{\partial {V}_x}{\partial x}+\frac{\partial {V}_y}{\partial y}+\frac{\partial {V}_z}{\partial z}=0 $$
(22)
$$ \frac{\partial {V}_i}{\partial {x}_k}={\displaystyle {\sum}_{j=1}\left(\frac{\partial {V}_i}{\partial {u}_j}.\frac{\partial {u}_j}{\partial {x}_k}\right)} $$
(23)

The above relation can be written in matrix form as follows:

$$ \frac{\partial {V}_i}{\partial {x}_k}=\left[\begin{array}{ccc}\hfill \frac{\partial {V}_x}{\partial x}\hfill & \hfill \frac{\partial {V}_x}{\partial y}\hfill & \hfill \frac{\partial {V}_x}{\partial z}\hfill \\ {}\hfill \frac{\partial {V}_y}{\partial x}\hfill & \hfill \frac{\partial {V}_y}{\partial y}\hfill & \hfill \frac{\partial {V}_y}{\partial z}\hfill \\ {}\hfill \frac{\partial {V}_z}{\partial x}\hfill & \hfill \frac{\partial {V}_z}{\partial y}\hfill & \hfill \frac{\partial {V}_z}{\partial z}\hfill \end{array}\right] $$
(24)
$$ \frac{\partial {V}_i}{\partial {u}_j}=\left[\begin{array}{ccc}\hfill \frac{\partial {V}_x}{\partial u}\hfill & \hfill \frac{\partial {V}_x}{\partial q}\hfill & \hfill \frac{\partial {V}_x}{\partial t}\hfill \\ {}\hfill \frac{\partial {V}_y}{\partial u}\hfill & \hfill \frac{\partial {V}_y}{\partial q}\hfill & \hfill \frac{\partial {V}_y}{\partial t}\hfill \\ {}\hfill \frac{\partial {V}_z}{\partial u}\hfill & \hfill \frac{\partial {V}_z}{\partial q}\hfill & \hfill \frac{\partial {V}_z}{\partial t}\hfill \end{array}\right] $$
(25)

Then:

$$ \frac{\partial {u}_j}{\partial {x}_k}={J}^{-1}=\frac{1}{ \det J}\left[\begin{array}{ccc}\hfill {I}_{11}\hfill & \hfill {I}_{12}\hfill & \hfill {I}_{13}\hfill \\ {}\hfill {I}_{21}\hfill & \hfill {I}_{22}\hfill & \hfill {I}_{23}\hfill \\ {}\hfill {I}_{31}\hfill & \hfill {I}_{32}\hfill & \hfill {I}_{33}\hfill \end{array}\right] $$
(26)

Where J is the Jacobian for conversion of x, y, and z coordinates to u, q, and t. The components of the matrix in relation (26) can be defined as:

$$ \begin{array}{l}{I}_{11}={g}_q{h}_t-{g}_t{h}_q\\ {}{I}_{12}={f}_q{h}_t+{f}_t{h}_q\\ {}{I}_{13}={f}_q{g}_t-{f}_t{g}_q\\ {}{I}_{21}=-{g}_u{h}_t+{g}_t{h}_u\\ {}{I}_{22}={f}_u{h}_t-{f}_t{h}_u\\ {}{I}_{23}={f}_u{g}_t+{f}_t{g}_u\\ {}{I}_{31}={g}_u{h}_q-{g}_q{h}_u\\ {}{I}_{32}=-{f}_u{h}_q+{f}_q{h}_u\\ {}{I}_{33}={f}_u{g}_q-{f}_q{g}_u\end{array} $$
(27)
$$ J=\left[\begin{array}{ccc}\hfill {f}_u\hfill & \hfill {f}_q\hfill & \hfill {f}_t\hfill \\ {}\hfill {g}_u\hfill & \hfill {g}_q\hfill & \hfill {g}_t\hfill \\ {}\hfill {h}_u\hfill & \hfill {h}_q\hfill & \hfill {h}_t\hfill \end{array}\right] $$
(28)
$$ \det J=\frac{\partial \left(x,y,z\right)}{\partial \left(u,q,t\right)}=\left[\begin{array}{ccc}\hfill \frac{\partial x}{\partial u}\hfill & \hfill \frac{\partial x}{\partial q}\hfill & \hfill \frac{\partial x}{\partial t}\hfill \\ {}\hfill \frac{\partial y}{\partial u}\hfill & \hfill \frac{\partial y}{\partial q}\hfill & \hfill \frac{\partial y}{\partial t}\hfill \\ {}\hfill \frac{\partial z}{\partial u}\hfill & \hfill \frac{\partial z}{\partial q}\hfill & \hfill \frac{\partial z}{\partial t}\hfill \end{array}\right] $$
(29)

By replacing the (24), (25), and (26) in (23):

$$ \begin{array}{l}\left[\begin{array}{ccc}\hfill \frac{\partial {V}_x}{\partial x}\hfill & \hfill \frac{\partial {V}_x}{\partial y}\hfill & \hfill \frac{\partial {V}_x}{\partial z}\hfill \\ {}\hfill \frac{\partial {V}_y}{\partial x}\hfill & \hfill \frac{\partial {V}_y}{\partial y}\hfill & \hfill \frac{\partial {V}_y}{\partial z}\hfill \\ {}\hfill \frac{\partial {V}_z}{\partial x}\hfill & \hfill \frac{\partial {V}_z}{\partial y}\hfill & \hfill \frac{\partial {V}_z}{\partial z}\hfill \end{array}\right]=\frac{1}{ \det J}\left[\begin{array}{ccc}\hfill \frac{\partial {V}_x}{\partial u}\hfill & \hfill \frac{\partial {V}_x}{\partial q}\hfill & \hfill \frac{\partial {V}_x}{\partial t}\hfill \\ {}\hfill \frac{\partial {V}_y}{\partial u}\hfill & \hfill \frac{\partial {V}_y}{\partial q}\hfill & \hfill \frac{\partial {V}_y}{\partial t}\hfill \\ {}\hfill \frac{\partial {V}_z}{\partial u}\hfill & \hfill \frac{\partial {V}_z}{\partial q}\hfill & \hfill \frac{\partial {V}_z}{\partial t}\hfill \end{array}\right]\times \left[\begin{array}{ccc}\hfill {I}_{11}\hfill & \hfill {I}_{12}\hfill & \hfill {I}_{13}\hfill \\ {}\hfill {I}_{21}\hfill & \hfill {I}_{22}\hfill & \hfill {I}_{23}\hfill \\ {}\hfill {I}_{31}\hfill & \hfill {I}_{32}\hfill & \hfill {I}_{33}\hfill \end{array}\right]\\ {}\end{array} $$
(30)

By differentiating (30) \( \left({V}_x=\frac{f_t}{h_t}{V}_z\kern0.5em ,\kern0.5em {V}_y=\frac{g_t}{h_t}{V}_z\kern0.5em ,\kern0.5em {V}_z=M\left(u,q,t\right)\right) \) with respect to u, q, t it can be written as:

$$ \begin{array}{l}\frac{\partial {V}_x}{\partial u}=\frac{\left({f}_{tu}.M+{f}_t.{M}_u\right).{h}_t-{f}_t.M.{h}_{tu}}{h_t^2}\hfill \\ {}\frac{\partial {V}_x}{\partial q}=\frac{\left({f}_{tq}.M+{f}_t.{M}_q\right).{h}_t-{f}_t.M.{h}_{tq}}{h_t^2}\hfill \\ {}\frac{\partial {V}_x}{\partial t}=\frac{\left({f}_u.M+{f}_t.{M}_t\right).{h}_t-{f}_t.M.{h}_{tt}}{h_t^2}\hfill \\ {}\frac{\partial {V}_y}{\partial u}=\frac{\left({g}_{tu}.M+{g}_t.{M}_u\right).{h}_t-{g}_t.M.{h}_{tu}}{h_t^2}\hfill \\ {}\frac{\partial {V}_y}{\partial q}=\frac{\left({g}_{tq}.M+{g}_t.{M}_q\right).{h}_t-{g}_t.M.{h}_{tq}}{h_t^2}\hfill \\ {}\frac{\partial {V}_y}{\partial t}=\frac{\left({g}_{tt}.M+{g}_t.{M}_t\right).{h}_t-{g}_t.M.{h}_{tt}}{h_t^2}\hfill \\ {}\frac{\partial {V}_z}{\partial u}={M}_u\hfill \\ {}\frac{\partial {V}_z}{\partial q}={M}_q\hfill \\ {}\frac{\partial {V}_z}{\partial t}={M}_t\hfill \end{array} $$
(31)

Expanding the relation (30) gives:

$$ \begin{array}{l}\frac{\partial {V}_x}{\partial x}=\frac{1}{ \det J}\left({I}_{11}\frac{\partial {V}_x}{\partial u}+{I}_{21}\frac{\partial {V}_x}{\partial q}+{I}_{31}\frac{\partial {V}_x}{\partial t}\right)\hfill \\ {}\frac{\partial {V}_x}{\partial y}=\frac{1}{ \det J}\left({I}_{12}\frac{\partial {V}_x}{\partial u}+{I}_{22}\frac{\partial {V}_x}{\partial q}+{I}_{32}\frac{\partial {V}_x}{\partial t}\right)\hfill \\ {}\frac{\partial {V}_x}{\partial z}=\frac{1}{ \det J}\left({I}_{13}\frac{\partial {V}_x}{\partial u}+{I}_{23}\frac{\partial {V}_x}{\partial q}+{I}_{33}\frac{\partial {V}_x}{\partial t}\right)\hfill \\ {}\frac{\partial {V}_y}{\partial x}=\frac{1}{ \det J}\left({I}_{11}\frac{\partial {V}_y}{\partial u}+{I}_{21}\frac{\partial {V}_y}{\partial q}+{I}_{31}\frac{\partial {V}_y}{\partial t}\right)\hfill \\ {}\frac{\partial {V}_y}{\partial y}=\frac{1}{ \det J}\left({I}_{12}\frac{\partial {V}_y}{\partial u}+{I}_{22}\frac{\partial {V}_y}{\partial q}+{I}_{32}\frac{\partial {V}_y}{\partial t}\right)\hfill \\ {}\frac{\partial {V}_y}{\partial z}=\frac{1}{ \det J}\left({I}_{13}\frac{\partial {V}_y}{\partial u}+{I}_{23}\frac{\partial {V}_y}{\partial q}+{I}_{33}\frac{\partial {V}_y}{\partial t}\right)\hfill \\ {}\frac{\partial {V}_z}{\partial x}=\frac{1}{ \det J}\left({I}_{11}\frac{\partial {V}_z}{\partial u}+{I}_{21}\frac{\partial {V}_z}{\partial q}+{I}_{31}\frac{\partial {V}_z}{\partial t}\right)\hfill \\ {}\frac{\partial {V}_z}{\partial y}=\frac{1}{ \det J}\left({I}_{12}\frac{\partial {V}_z}{\partial u}+{I}_{22}\frac{\partial {V}_z}{\partial q}+{I}_{32}\frac{\partial {V}_z}{\partial t}\right)\hfill \\ {}\frac{\partial {V}_z}{\partial z}=\frac{1}{ \det J}\left({I}_{13}\frac{\partial {V}_z}{\partial u}+{I}_{23}\frac{\partial {V}_z}{\partial q}+{I}_{33}\frac{\partial {V}_z}{\partial t}\right)\hfill \end{array} $$
(32)

Moreover, the strain and velocity relations can be defined as:

$$ \begin{array}{l}{\varepsilon}_{xx}=\frac{\partial {V}_x}{\partial x}\hfill \\ {}{\varepsilon}_{xy}=\frac{1}{2}\left(\frac{\partial {V}_x}{\partial y}+\frac{\partial {V}_y}{\partial x}\right)\hfill \\ {}{\varepsilon}_{xz}=\frac{1}{2}\left(\frac{\partial {V}_x}{\partial z}+\frac{\partial {V}_z}{\partial x}\right)\hfill \\ {}{\varepsilon}_{yz}=\frac{1}{2}\left(\frac{\partial {V}_y}{\partial z}+\frac{\partial {V}_z}{\partial y}\right)\hfill \\ {}{\varepsilon}_{yy}=\frac{\partial {V}_y}{\partial y}\hfill \\ {}{\varepsilon}_{zz}=\frac{\partial {V}_z}{\partial z}\hfill \end{array} $$
(33)

Using (31), (32), and (33) the incompressibility condition can be re-written as:

$$ \begin{array}{l}{\varepsilon}_{ii}=\frac{\partial {V}_x}{\partial x}+\frac{\partial {V}_y}{\partial y}+\frac{\partial {V}_z}{\partial z}=\frac{1}{ \det J}\left({I}_{11}\frac{\partial {V}_x}{\partial u}+{I}_{21}\frac{\partial {V}_x}{\partial q}+{I}_{31}\frac{\partial {V}_x}{\partial t}+{I}_{12}\frac{\partial {V}_y}{\partial u}+{I}_{22}\frac{\partial {V}_y}{\partial q}+{I}_{32}\frac{\partial {V}_y}{\partial t}\right.\hfill \\ {}\left.+{I}_{13}\frac{\partial {V}_z}{\partial u}+{I}_{23}\frac{\partial {V}_z}{\partial q}+{I}_{33}\frac{\partial {V}_z}{\partial t}\right)=0\hfill \end{array} $$
(34)
$$ \begin{array}{l}{\varepsilon}_{ii}=\frac{1}{ \det J}\left[\left({g}_q{h}_t-{g}_t{h}_q\right)\frac{\left({f}_{tu}.M+{f}_t.{M}_u\right).{h}_t-{f}_t.M.{h}_{tu}}{h_t^2}\right.\hfill \\ {}\left(-{f}_qh{}_t+{f}_t{h}_q\right)\frac{\left({f}_{tq}.M+{f}_t{M}_q\right).{h}_t-{f}_t.M.{h}_{tq}}{h_t^2}\hfill \\ {}+\left({g}_u{h}_q-{g}_q{h}_u\right)\frac{\left({f}_{tt}.M+{f}_t.{M}_1\right).{h}_t-{f}_t.M.{h}_{tt}}{h_t^2}\hfill \\ {}+\left(-{f}_q{h}_t+{f}_t{h}_q\right)\frac{\left({g}_{tu}.M+{g}_t.{M}_u\right).{h}_t-{g}_t.M.{h}_{tu}}{h_t^2}\hfill \\ {}+\left({f}_u{h}_t-{f}_t{h}_u\right)\frac{\left({g}_{tq}.M+{g}_t.{M}_q\right).{h}_t-{g}_t.M.{h}_{tq}}{h_t^2}\hfill \\ {}+\left(-{f}_u{h}_q+{f}_q{h}_u\right)\frac{\left({g}_{tt}.M+{g}_t.{M}_t\right).{h}_t-{g}_t.M.{h}_{tt}}{h_t^2}\hfill \\ {}+\left({f}_q{g}_q-{f}_t{g}_q\right){M}_u+\left(-{f}_u{g}_t+{f}_t{g}_u\right){M}_q\hfill \\ {}+\left.\left({f}_u{g}_q-{f}_q{g}_u\right){M}_t\right]=0\hfill \end{array} $$
(35)

Relation (35) in a simple way can be written as:

$$ A\left(u,q,t\right)M+B\left(u,q,t\right).\frac{\partial M}{\partial t}=0 $$
(36)

Where:

$$ \begin{array}{l}\begin{array}{l}A={h}_t\left({g}_q{f}_{tu}{h}_t-{g}_q{h}_{tu}{f}_t-{g}_t{h}_q{f}_{tu}-{g}_u{h}_t{f}_{tq}+{g}_u{h}_{tq}{f}_t\right.\hfill \\ {}+{g}_t{h}_u{f}_{tq}+{g}_u{h}_q{f}_{tt}-{g}_q{h}_u{f}_{tt}-{f}_q{g}_{tu}{h}_t+{f}_q{h}_{tu}{g}_t\hfill \\ {}\left.+{f}_t{h}_q{g}_{tu}-{f}_u{g}_{tq}{h}_t-{f}_u{h}_{tu}{g}_t-{f}_t{h}_u{g}_{tq}-{f}_u{h}_q{g}_{tt}+{f}_q{h}_u{g}_{tt}\right)\hfill \\ {}+{g}_t{h}_q{h}_{tu}{f}_t-{g}_t{h}_u{h}_{tq}{f}_t-{g}_q{h}_u{h}_{tt}{f}_t-{g}_u{h}_q{f}_t{h}_{tt}\hfill \\ {}-{f}_t{h}_q{h}_{tu}{g}_t+{f}_t{h}_u{h}_{tq}{g}_t+{g}_q{h}_u{h}_{tt}{f}_t-{f}_u{h}_u{h}_{tt}{g}_t\hfill \end{array}\hfill \\ {}B={h}_t\left({h}_t\left({f}_u{g}_q-{f}_q{g}_u\right)+{h}_q\left({f}_t{g}_u-{f}_u{g}_t\right)+{h}_u\left({f}_q{g}_t-{f}_t{g}_q\right)\right)\hfill \end{array} $$
(37)

By integrating relation (36) we have:

$$ \int \frac{\partial M}{M}=-\int \frac{A}{B}\partial t $$
(38)
$$ A=\frac{\partial B}{\partial t}-{A}_1\kern0.5em ,\kern0.5em {A}_1=2{h}_{tt}\left({h}_t\left({f}_u{g}_q-{f}_q{g}_u\right)+{h}_q\left({f}_t{g}_u-{f}_u{g}_t\right)+{h}_u\left({f}_q{g}_t-{f}_t{g}_q\right)\right) $$
(39)
$$ \frac{A}{B}=\frac{\left(\partial B/\partial t\right)-{A}_1}{B} $$
(40)
$$ \frac{A}{B}=\frac{\left(\partial B/\partial t\right)}{B}-\frac{2{h}_{tt}}{h_t} $$
(41)
$$ \int \frac{\partial M}{M}=-\int \left(\frac{\left(\partial B/\partial t\right)}{B}-\frac{2{h}_{tt}}{h_t}\right)\partial t $$
(42)
$$ Ln(M)=- Ln(B)+ Ln\left({h}_t\right)+ Ln(C) $$
(43)

In relation (43) C is a function of u and q (C = C(u,q)) that yields:

$$ M=\frac{h_t^2C}{B} $$
(44)

Finally, replacing B from relation (37) in (44) gives:

$$ M=\frac{C\left(u,q\right)}{\left({f}_u{g}_q-{f}_q{g}_u\right)+{h}_q/{h}_t\left({f}_t{g}_u-{f}_u{g}_t\right)+{h}_u/{h}_t\left({f}_q{g}_t-{f}_t{g}_q\right)} $$
(45)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabatabaei, S.A., Abrinia, K. & Givi, M.K.B. Application of equi-potential lines method for accurate definition of the deforming zone in the upper-bound analysis of forward extrusion problems. Int J Adv Manuf Technol 72, 1039–1050 (2014). https://doi.org/10.1007/s00170-014-5647-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-5647-4

Keywords

Navigation