
        
    
        
            
            
                
            

            
        
    

        
    
        
            
            
                
            

            
        
    


        
    




        

        
    Skip to main content

    

    
    
        
            
                
                    
                        
                    
                
            
        


        
            
                
    
        Log in
    


            
        
    


    
        
            
                
                    
                        
                            
                        Menu
                    
                


                
                    
                        
                            Find a journal
                        
                    
                        
                            Publish with us
                        
                    
                        
                            Track your research
                        
                    
                


                
                    
                        
                            
                                
                                    
                                Search
                            
                        

                    
                    
                        
 
  
   
  Cart
 


                    
                

            

        
    




    
        
    
        
            
                
                    
    
        
            	
                        Home




	
                        Structural and Multidisciplinary Optimization

	
                        Article

GRAND3 — Ground structure based topology optimization for arbitrary 3D domains using MATLAB


                    	RESEARCH PAPER
	
                            Published: 23 July 2015
                        


                    	
                            Volume 52, pages 1161–1184, (2015)
                        
	
                            Cite this article
                        



                    
                        
                        
                    

                
                
                    
                        
                            
                            
                                
                                
                            
                            Structural and Multidisciplinary Optimization
                        
                        
                            
                                Aims and scope
                                
                            
                        
                        
                            
                                Submit manuscript
                                
                            
                        
                    
                

            
        
    


        
            
                

                

                
                    
                        	Tomás Zegard1 & 
	Glaucio H. Paulino1 


                        
    

                        
                            	
            
                
            3541 Accesses

        
	
            
                
            91 Citations

        
	
            Explore all metrics 
                
            

        


                        

                        
    
    

    
    


                        
                    
                


                
                    Abstract
Since its introduction, the ground structure method has been used in the derivation of closed–form analytical solutions for optimal structures, as well as providing information on the optimal load–paths. Despite its long history, the method has seen little use in three–dimensional problems or in problems with non–orthogonal domains, mainly due to computational implementation difficulties. This work presents a methodology for ground structure based topology optimization in arbitrary three–dimensional (3D) domains. The proposed approach is able to address concave domains and with the possibility of holes. In addition, an easy–to–use implementation of the proposed algorithm for the optimization of least–weight trusses is described in detail. The method is verified against three–dimensional closed–form solutions available in the literature. By means of examples, various features of the 3D ground structure approach are assessed, including the ability of the method to provide solutions with different levels of detail. The source code for a MATLAB implementation of the method, named GRAND3 — GRound structure ANalysis and Design in 3D, is available in the (electronic) Supplementary Material accompanying this publication.
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                    Notes
	A directional cosine vector has a norm of unity by definition, and thus the dot product of directional cosines vectors is equal to the cosine of the angle between them.


	This collision primitive is built from multiple calls to the triangle and quad collision primitives.


	Michell’s formula matches the subsequent work provided that the quantity L in Michell (1904) is taken to be equal to M
                                 r. Whether Michell meant this to be the real meaning of the quantity L, or not, is unclear.


	This could be solved by making the domain wider than it is taller (L
                                          
                              x
                            =L
                                          
                              y
                            >R), but that would imply a priori knowledge of the solution.


	Ericson (2004) outlined a procedure for the finite cylinder. However, his derivation is flawed. The book’s errata attempts to fix this, but with no success.
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Appendices
Appendix A: – Nomenclature

                  	
                        A
                      :
	
                        Connectivity matrix

                      
	
                        a
                      :
	
                        Cross–sectional areas vector

                      
	
                        B
                        T
                      :
	
                        Force equilibrium (geometric) matrix

                      
	
                        C
                        o
                        l
                        T
                        o
                        l
                      :
	
                        Tolerance in the collinearity check

                      
	
                        \(\hat {\mathbf {d}}\)
                      :
	
                        Member’s directional cosines vector

                      
	
                        f
                      :
	
                        Nodal load vector

                      
	
                        G
                      :
	
                        Candidate member matrix

                      
	
                        l
                      :
	
                        Member’s length vector

                      
	
                        L
                        v
                        l
                      :
	
                        Ground structure connectivity level

                      
	
                        n
                      :
	
                        Internal (axial) forces vector

                      
	
                        N
                        
                          b
                        
                      :
	
                        Number of bars (truss members)

                      
	
                        N
                        
                          d
                          o
                          f
                        
                      :
	
                        Number of degrees–of–freedom of the structure

                      
	
                        N
                        
                          e
                        
                      :
	
                        Number of elements in the base mesh

                      
	
                        N
                        
                          f
                        
                      :
	
                        Number of nodes with fixities

                      
	
                        N
                        
                          l
                        
                      :
	
                        Number of nodes with loads

                      
	
                        N
                        
                          n
                        
                      :
	
                        Number of nodes in the domain

                      
	
                        N
                        
                          s
                          u
                          p
                        
                      :
	
                        Number of fixed nodal components (or DOFs)

                      
	
                                    s
                                    +,s
                                    −
                                 :
	
                        Stress constraint (positive) slack variables

                      
	
                        V
                      :
	
                        Volume

                      
	
                        κ
                      :
	
                        Tension to compression stress limit ratio

                      
	
                        σ
                      :
	
                        Member’s (axial) stresses vector

                      
	
                                    σ
                                    
                          T
                        ,σ
                                    
                          C
                        
                                 :
	
                        Stress limits in tension and compression

                      
	
                        ϕ
                        
                          F
                        
                      :
	
                        Latitude of the the moment application ring for the torsion ball problem

                      


                Appendix B: – Collision (intersection) tests
The collision (or intersection) tests are quite common in the the video–game industry and in the field of computational geometry. While not constituting a new development, these derivations are given here for the sake of completeness. The collision primitives for the box, triangle, quadrangle and cylinder follow procedures outlined in Ericson (2004) with some modifications. The sphere, disc and rodFootnote 5 were developed specifically for GRAND3, although similar procedures are likely to be found in literature given the relatively simple nature of the problem.
The surface primitive, built from the triangle and quadrangle primitives, is special; a complicated restriction volume can be translated into testing the collision on its surface. This allows the method to address complicated volumes that would be difficult to represent with the already available primitives.
1.1 B.1 Box primitive
The box primitive is defined by the coordinates of the two extreme vertices; \(A_{min}=\left \{ x_{min} ~,~ y_{min} ~,~ z_{min} \right \}\) and \(A_{max}=\left \{ x_{max} ~,~ y_{max} ~,~ z_{max} \right \}\). Given a segment \(\overline {pq}\), the segment’s directional vector is \(\mathbf {d}=\overrightarrow {PQ}=Q-P\), and any point X in the segment is defined as X=P+t
                              d, with 0≤t≤1. The segment collides with the box if there is a sub–segment within \(\overline {pq}\) contained inside the box, as shown in Fig. 26.

Fig. 26
Collision test between a box and a segment


Full size image


                           Defining the sub–segment \(\overline {P^{\prime }Q^{\prime }}\), with \(P^{\prime }=P+t_{min}\mathbf {d}\) and \(Q^{\prime }=P+t_{max}\mathbf {d}\), the sub–segment is valid if 0≤t
                              
                      m
                      i
                      n
                    ≤t
                              
                      m
                      a
                      x
                    ≤1. Initially t
                              
                      m
                      i
                      n
                    =0 and t
                              
                      m
                      a
                      x
                    =1, positioning nodes P
                              ′ and Q
                              ′ at P and Q respectively. The sub–segment is then clipped by the box’s 6 planes, corresponding to x
                              
                      m
                      i
                      n
                    , x
                              
                      m
                      a
                      x
                    , y
                              
                      m
                      i
                      n
                    , y
                              
                      m
                      a
                      x
                    , z
                              
                      m
                      i
                      n
                     and z
                              
                      m
                      a
                      x
                    . If the sub–segment is still valid after the clipping has been done, then the sub–segment is inside the box.
Defining a unit vector in the x direction \(\hat {\mathbf {e}}_1 = \left \{ 1 ~,~ 0 ~,~ 0 \right \}\), the procedure for clipping on the x plane is as follows: 

$$ t_1 = \frac{ A_{min} \cdot \hat{\mathbf{e}}_1 - P \cdot \hat{\mathbf{e}}_1 }{ \mathbf{d} \cdot \hat{\mathbf{e}}_1} \qquad t_2 = \frac{ A_{max} \cdot \hat{\mathbf{e}}_1 - P \cdot \hat{\mathbf{e}}_1 }{ \mathbf{d} \cdot \hat{\mathbf{e}}_1}  $$

                    (15)
                

Depending on the orientation of \(\overline {pq}\), it could occur that t
                              1>t
                              2, and in such case their values are switched; \(t_1 \leftarrow t_2\) and \(t_2 \leftarrow t_1\). Finally, the clipping process is simply: 

$$ t_{min} \leftarrow \max \left( t_{min} ~,~ t_1 \right) \qquad t_{max} \leftarrow \min \left( t_{max} ~,~ t_2 \right)  $$

                    (16)
                

The process is then repeated for the y plane with \(\hat {\mathbf {e}}_2 = \left \{ 0 ~,~ 1 ~,~ 0 \right \}\), and finally the z plane with \(\hat {\mathbf {e}}_3 = \left \{ 0~,~ 0 ~,~ 1 \right \}\). The segment collides with the box if t
                              
                      m
                      i
                      n
                    ≤t
                              
                      m
                      a
                      x
                     after all the clipping has been carried out. Incidentally, this procedure can address the accidental case where A
                              
                      m
                      i
                      n
                     and A
                              
                      m
                      a
                      x
                     are reversed.
1.2 B.2 Triangle primitive
Given a segment \(\overline {pq}\), intersecting the plane defined by points A, B and C in space at a point W (Fig. 27). The segment intersects the triangle △A
                              B
                              C if point W lies inside the triangle.

Fig. 27
Collision test between a triangle and a segment


Full size image


                           One possible solution is to find the point W, and then check if such point is inside the triangle. Assuming the triangle is defined counterclockwise: point W is inside the triangle if it is located to the left for all edges. Extending to any triangle arrangement (clockwise or counterclockwise): point W is inside the triangle if it is located to the same side for all edges. Based on this idea, the volumes of the three distinct tetrahedra can be defined by segment \(\overline {pq}\), and each one of the triangle’s edges. These volumes can be computed by triple products, with the sign of these triple products depending on the manifold orientation of the three vectors defining the tetrahedron. If point W is found to the same side of all edges, then the sign of these volume calculations (triple products) is the same.
Defining the segment’s directional vector as \(\mathbf {d}=\overrightarrow {PQ}=Q-P\), then any point X within the segment is defined as X=P+t
                              d, with 0≤t≤1. The normal to the triangle’s plane is \(\mathbf {n}=\overrightarrow {AB}\times \overrightarrow {AC}\). The intersection point with the plane of the triangle W is defined as W=P+t
                              
                      w
                    
                              d, with: 

$$ t_w = \frac{\overrightarrow{PA} \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}} \:.  $$

                    (17)
                

The triple products are defined as: 

$$\begin{array}{@{}rcl@{}} V_1 &=& \left[ \mathbf{d}~ \overrightarrow{PC} ~ \overrightarrow{PB} \right] \\ V_2 &= &\left[ \mathbf{d} ~ \overrightarrow{PA} ~ \overrightarrow{PC} \right]\\ V_3 &=& \left[ \mathbf{d} \; \overrightarrow{PB} \; \overrightarrow{PA} \right] \end{array} $$

                    (18)
                


                           Finally, the segment \(\overline {pq}\) intersects the triangle △A
                              B
                              C if and only if: 

$$ 0\leq t_w \leq 1 \qquad \text{and} \qquad \text{sign} \left( V_1 \right) = \text{sign} \left( V_2 \right) = \text{sign} \left( V_3 \right)  $$

                    (19)
                


                           1.3 B.3 Quadrangle primitive
Splitting the quadrangle into two triangles, the quadrangle is really an extension of the triangle primitive case. It is assumed that the quadrangle is flat and all 4 points lie (approximately) in the same plane. Compared to two complete triangle tests, there is a potential computational saving if one of the two triangles is chosen early in the calculations (triangles △A
                              B
                              1
                              C and △A
                              C
                              B
                              2 in Fig. 28).

Fig. 28
Collision test between a quadrangle and a segment


Full size image


                           Defining the segment’s directional vector as \(\mathbf {d}=\overrightarrow {PQ}=Q-P\), then any point X within the segment is defined as X=P+t
                              d, with 0≤t≤1. The normal to the quadrangle’s plane is \(\mathbf {n}=\overrightarrow {AB_1}\times \overrightarrow {AB_2}\). The intersection point with the plane of the quadrangle is defined as W=P+t
                              
                      w
                    
                              d, with: 

$$ t_w = \frac{\overrightarrow{PA} \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}} ~.  $$

                    (20)
                

The triple products are defined as: 

$$\begin{array}{@{}rcl@{}} V_a = & \left[ \mathbf{d} ~ \overrightarrow{PC} ~ \overrightarrow{PB_1} \right] &= \mathbf{e}_1 \cdot \overrightarrow{PB_1}\\ V_b = & \left[ \mathbf{d} ~ \overrightarrow{PC} ~ \overrightarrow{PB_2} \right] & = \mathbf{e}_1 \cdot \overrightarrow{PB_2}\\ V_2 = & - \left[ \mathbf{d} ~ \overrightarrow{PC} ~ \overrightarrow{PA} \right] & = - \mathbf{e}_1 \cdot \overrightarrow{PA} ~, \end{array} $$

                    (21)
                

with \(\mathbf {e}_1 = \mathbf {d} \times \overrightarrow {PC}\). If the segment collides with a triangle, then all triple products must have the same sign. Thus, the correct triangle can be chosen at this stage, and the third (and last) triple product can be computed: 

$$\begin{array}{@{}rcl@{}} \mathbf{e}_2 &=& ~ \left\{ \begin{array}{lll} \mathbf{d} \times \overrightarrow{PB_1} & ~ \text{ if } ~ & \text{sign} \left( V_a \right) = \text{sign} \left( V_2 \right) \\ \mathbf{d} \times \overrightarrow{PB_2} & ~ \text{ if } ~ & \text{sign} \left( V_b \right) = \text{sign} \left( V_2 \right) \end{array}\right.\\ V_3 &=& \mathbf{e}_2 \cdot \overrightarrow{PA} \end{array} $$

                    (22)
                

The segment collides with the quadrangle \(\Box AB_1CB_2\) if and only if: 

$$ 0\leq t_w \leq 1 \qquad \text{and} \qquad \text{sign} \left( V_2 \right) = \text{sign} \left( V_3 \right)  $$

                    (23)
                


                           1.4 B.4 Sphere primitive
Defining the segment’s directional vector as \(\mathbf {d}=\overrightarrow {PQ}=Q-P\), then any point X in the segment is defined as X=P+t
                              d, with 0≤t≤1. The segment intersects the sphere if any of the following three criteria is met (Fig. 29): 

	
                        1.
                        
                          Point P is inside the sphere.


                        
                      
	
                        2.
                        
                          Point Q is inside the sphere.

                        
                      
	
                        3.
                        
                          The point in the segment that is closest to the sphere’s center is between P and Q and inside the sphere.

                        
                      


                              Fig. 29
Collision test between a sphere and a segment


Full size image


                           Defining a vector v=C−P, then there is collision according to the first criteria if: 

$$ \mathbf{v} \cdot \mathbf{v} \leq r^2  $$

                    (24)
                

Similarly, there is collision according to the second criteria if: 

$$ \left( \mathbf{v}-\mathbf{d} \right) \cdot \left( \mathbf{v}-\mathbf{d} \right) = \mathbf{v} \cdot \mathbf{v} - 2 \mathbf{v} \cdot \mathbf{d} + \mathbf{d} \cdot \mathbf{d} \leq r^2  $$

                    (25)
                

The closest point in the line defined by P and Q to the sphere’s center, measured from point P is: 

$$ \mathbf{w} = \frac{\mathbf{v} \cdot \mathbf{d}}{\mathbf{d} \cdot \mathbf{d}} \mathbf{d}  $$

                    (26)
                

This point is inside the sphere if: 

$$\begin{array}{@{}rcl@{}} \left( \mathbf{v}-\mathbf{w} \right) \cdot \left( \mathbf{v}-\mathbf{w} \right) & \leq & r^2 \\ \left( \mathbf{v}- \frac{\mathbf{v} \cdot \mathbf{d}}{\mathbf{d} \cdot \mathbf{d}} \mathbf{d} \right) \cdot \left( \mathbf{v} - \frac{\mathbf{v} \cdot \mathbf{d}}{\mathbf{d} \cdot \mathbf{d}} \mathbf{d} \right) & \leq & r^2~, \end{array} $$

                    (27)
                

with this point inside the segment \(\overline {pq}\) if and only if 0≤w⋅d≤d⋅d, which is an equivalent expression to 0≤t≤1.
1.5 B.5 Disc primitive
Defining the segment’s directional vector as \(\mathbf {d}=\overrightarrow {PQ}=Q-P\), then any point X in the segment is defined as X=P+t
                              d, with 0≤t≤1.
The disc is centered at point A, and the normal points towards a point B as in Fig. 30. The normal to the plane of the disc is n=B−A. Defining \(\mathbf {v}=\overrightarrow {AP}=P-A\), the intersection with the disc’s plane is found at a point W=P+t
                              
                      w
                    
                              d: 

$$ t_w = - \frac{\mathbf{v} \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}}  $$

                    (28)
                

The segment collides with the disc if the distance between point W and the disc’s center A is less than or equal to the disc’s radius: 

$$ \overrightarrow{AW} = W-A = P-A+t_w \mathbf{d} = \mathbf{v} - \frac{\mathbf{v} \cdot \mathbf{n}}{\mathbf{d} \cdot\mathbf{n}} \mathbf{d}  $$

                    (29)
                

Finally, the segment collides with the disc if and only if: 

$$ \overrightarrow{AW} \cdot \overrightarrow{AW} = \left( \mathbf{v} - \frac{\mathbf{v} \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}} \right) \cdot \left( \mathbf{v} - \frac{\mathbf{v} \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}} \right) \leq r^2 ~,  $$

                    (30)
                

with 0≤t
                              
                      w
                    ≤1.

Fig. 30
Collision test between a disc and a segment


Full size image


                           1.6 B.6 Cylinder primitive (infinite cylinder)
Defining the segment’s directional vector as \(\mathbf {d}=\overrightarrow {PQ}=Q-P\), then any point X in the segment is defined as X=P+t
                              d, with 0≤t≤1. The segment is found to collide with the (infinite) cylinder if: 

	
                        1.
                        
                          The segment collides with the cylinder’s surface.

                        
                      
	
                        2.
                        
                          The segment is completely contained within the cylinder.

                        
                      


                           The cylinder’s axis is defined by n=B−A as in Fig. 31. The intersection with the cylinder’s surface is found at points W=P+t
                              
                      w
                    
                              d. Defining the radial vector of length r from the cylinder’s axis to point W as m, then: 

$$\begin{array}{@{}rcl@{}} 0 &=& \mathbf{m} \cdot \mathbf{m} - r^2 \\ 0 &=& \left( \overrightarrow{AW} - \frac{\overrightarrow{AW} \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{n} } \mathbf{n} \right) \cdot \left( \overrightarrow{AW} - \frac{\overrightarrow{AW} \cdot \mathbf{n}}{\mathbf{n} \cdot\mathbf{n} } \mathbf{n} \right) - r^2 \end{array} $$

                    (31)
                

Defining \(\mathbf {v}=\overrightarrow {AP}=P-A\), and expanding \(\overrightarrow {AW}\) in terms of v, d and t
                              
                      w
                    : 

$$\begin{array}{@{}rcl@{}} 0 &=& \left( \left( \mathbf{v} + t_w \mathbf{d} \right) - \left[ \frac{ \left( \mathbf{v} + t_w \mathbf{d} \right) \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{n} } \right] \mathbf{n} \right) \cdot \\ && \left( \left( \mathbf{v} + t_w \mathbf{d} \right) - \left[ \frac{ \left( \mathbf{v} + t_w \mathbf{d} \right) \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{n} } \right] \mathbf{n} \right) - r^2 ~, \end{array} $$

                    (32)
                

where terms can be ordered to obtain a quadratic equation for t
                              
                      w
                    : 

$$\begin{array}{@{}rcl@{}} 0 &=& \left[ \mathbf{d} \cdot \mathbf{d} - \frac{\left( \mathbf{d} \cdot \mathbf{n}\right)^2}{\mathbf{n} \cdot \mathbf{n}} \right] t_w^2 \;+ \\ && 2 \left[ \mathbf{v} \cdot \mathbf{d} - \frac{ \left( \mathbf{d} \cdot \mathbf{n}\right)\left( \mathbf{v} \cdot \mathbf{n}\right)}{\mathbf{n} \cdot \mathbf{n}} \right] t_w \;+ \\ && \left( \mathbf{v} \cdot \mathbf{v} \right) - \frac{\left( \mathbf{v} \cdot \mathbf{n}\right)^2}{\mathbf{n} \cdot \mathbf{n}} - r^2 \end{array} $$

                    (33)
                

Multiplying by n⋅n, the quadratic equation becomes: 

$$\begin{array}{@{}rcl@{}} 0 &=& a t_w^2 + b t_w + c \\ a &=& \left( \mathbf{n} \cdot \mathbf{n} \right) \left( \mathbf{d} \cdot \mathbf{d} \right) - \left( \mathbf{d} \cdot \mathbf{n}\right)^2\\ \frac{b}{2} &=& \left( \mathbf{n} \cdot \mathbf{n} \right) \left( \mathbf{v} \cdot \mathbf{d} \right) - \left( \mathbf{d} \cdot \mathbf{n} \right) \left( \mathbf{v} \cdot \mathbf{n} \right) \\ c &=& \left( \mathbf{n} \cdot \mathbf{n} \right) \left[ \left( \mathbf{v} \cdot \mathbf{v} \right) - r^2 \right] -\left( \mathbf{v} \cdot \mathbf{n}\right)^2, \end{array} $$

                    (34)
                

with solutions given by: 

$$ t_w = \frac{-b \pm \sqrt{b^2-4ac}}{2a} = \frac{-\frac{b}{2} \pm \sqrt{\left( \frac{b}{2}\right)^2-ac}}{a}  $$

                    (35)
                

The (infinite) line defined by the segment does not intersect the cylinder if the discriminant in (35) is negative (i.e. \(\left (b/2\right )^2-ac < 0\)). If the discriminant is positive, then an additional check must be made to ensure the intersection point is within the segment \(\overline {pq}\). The segment collides with the cylinder if 0≤t
                              
                      w
                    ≤1 for any of the two roots (points W and W
                              ′ in Fig. 31).

Fig. 31
Collision test between a cylinder (infinite length) and a segment


Full size image


                           Finally, the segment is completely contained inside the cylinder, if the distance from the cylinder’s axis to point P is less than or equal to the radius r: 

$$ \left( \mathbf{v} - \frac{\mathbf{v} \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{n} } \mathbf{n} \right) \cdot \left( \mathbf{v} - \frac{\mathbf{v} \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{n} } \mathbf{n} \right) \leq r^2  $$

                    (36)
                


                           1.7 B.7 Rod primitive
The rod primitive is a combination of the infinite cylinder and disc primitives with some minor modifications. The segment collides with the rod if any of the following 4 situations occur: 

	
                        The segment collides with the finite cylinder’s surface.

                      
	
                        The segment collides with the A endcap (disc).

                      
	
                        The segment collides with the B endcap (disc).

                      
	
                        The segment is fully contained within the rod.

                      


                           The collision with the finite cylinder’s surface begins from the test primitive for the infinite cylinder outlined in (34) and (35). In addition, the intersection points W and \(W^{\prime }\) (Fig. 32) must be in the surface between the endcaps. Thus, an additional check is required; the segment collides with the finite cylinder’s surface if: 

$$\begin{array}{@{}rcl@{}} 0 &\leq & \mathbf{w} \cdot \mathbf{n} \leq \mathbf{n} \cdot \mathbf{n} \\ 0 &\leq & \left( \mathbf{v} + t_w \mathbf{d} \right) \cdot \mathbf{n} \leq \mathbf{n} \cdot \mathbf{n} \end{array} $$

                    (37)
                

for any of the two roots of t
                              
                      w
                     from (35), with 0≤t
                              
                      w
                    ≤1.

Fig. 32
Collision test between a rod (finite cylinder with endcaps) and a segment


Full size image


                           The collision with the endcaps A and B follow the procedure for the disc primitive. Equation (30) can be used with no modification to test the collision against endcap A. The B endcap is analogous to the endcap A; the segment collides with endcap B if: 

$$\begin{array}{@{}rcl@{}} \overrightarrow{BW} \cdot \overrightarrow{BW} &\leq & r^2 \\ \left( \mathbf{v} + \frac{\mathbf{n} \cdot \mathbf{n} - \mathbf{v} \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}}\right) \cdot \left( \mathbf{v} + \frac{\mathbf{n} \cdot \mathbf{n} - \mathbf{v} \cdot \mathbf{n}}{\mathbf{d}\cdot \mathbf{n}} \right) &\leq& r^2 ~, \end{array} $$

                    (38)
                

with: 

$$ 0\leq \left( t_w = \frac{\mathbf{n} \cdot \mathbf{n} - \mathbf{v} \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}} \right) \leq 1  $$

                    (39)
                


                           Finally, if the segment is completely contained in the rod, then point P must be inside the rod. In other words, if the distance from point P to the cylinder’s axis is less than or equal to r: 

$$ \left( \mathbf{v} - \frac{\mathbf{v} \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{n} } \mathbf{n} \right) \cdot \left( \mathbf{v} - \frac{\mathbf{v} \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{n} } \mathbf{n} \right) \leq r^2 ~,  $$

                    (40)
                

with an additional check to verify point A is between the endcaps: 

$$ 0 \leq \frac{\mathbf{v} \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{n} } \leq 1  $$

                    (41)
                


                           1.8 B.8 Surface primitive
The surface primitive builds from the base of the triangle and quadrangle primitives. The surface primitive can handle any surface provided that it is tessellated (discretized) and the points in each facet lie (approximately) in the same plane. In addition, it is assumed that all facets are convex in their own plane. An example of a tessellated surface is shown in Fig. 33: the surface was tessellated using triangles and quadrangles. The inputs for this collision primitive are: 

	
                        A matrix of nodes RNODE of size N
                                       
                            r
                            n
                          ×3, where N
                                       
                            r
                            n
                           is the number of nodes in the collision surface.


                      
	
                        A list (cell) with facet connectivity RFACE of size N
                                       
                            r
                            f
                          ×1, where N
                                       
                            r
                            f
                           is the number of facets in the collision surface. Each entry in RFACE is a row vector with nodal connectivity (based on RNODE).

                      


                              Fig. 33
Collision surface example: Surface is tessellated into triangles and quadrangles


Full size image


                           The surface collision primitive can address facets with more than 4 nodes (flat polygons), provided that all the nodes lie in (approximately) the same plane. This polygon will be subdivided into triangles and evaluated sequentially.
1.9 B.9 Development & debugging of collision tests
Algorithms for additional intersection tests can be found in literature or derived. It is strongly recommended however, to test and debug new collision primitives thoroughly. In the present work for example, simple game–like user interfaces were used for live testing the collision primitives (see Fig. 34 for an example).

Fig. 34
User interface for live testing and debugging the disc collision primitive


Full size image


                           

Rights and permissions
Reprints and permissions


About this article
       



Cite this article
Zegard, T., Paulino, G.H. GRAND3 — Ground structure based topology optimization for arbitrary 3D domains using MATLAB.
                    Struct Multidisc Optim 52, 1161–1184 (2015). https://doi.org/10.1007/s00158-015-1284-2
Download citation
	Received: 04 November 2014

	Revised: 11 April 2015

	Accepted: 07 June 2015

	Published: 23 July 2015

	Issue Date: December 2015

	DOI: https://doi.org/10.1007/s00158-015-1284-2


Share this article
Anyone you share the following link with will be able to read this content:
Get shareable linkSorry, a shareable link is not currently available for this article.


Copy to clipboard

                            Provided by the Springer Nature SharedIt content-sharing initiative
                        


Keywords
	Ground structure method
	Topology optimization of three–dimensional trusses
	Three-dimensional optimal structures
	Unstructured meshes
	Intersection tests








                    
                

            

            
                
                    

                    
                        
                            
    

                        

                    

                    
                        
                    


                    
                        
                            
                                
                            

                            
                                
                                    
                                        Access this article


                                        
                                            
                                                
                                                    
                                                        Log in via an institution
                                                        
                                                            
                                                        
                                                    
                                                

                                            
                                        

                                        
                                            
 
 
  
   
    
     
     
      Buy article PDF USD 39.95
     

    

    Price excludes VAT (USA)

     Tax calculation will be finalised during checkout.

    Instant access to the full article PDF.

   

  

  
 

 
  
   
    Rent this article via DeepDyve
     
      
     

   

  

  
 


                                        

                                        
                                            Institutional subscriptions
                                                
                                                    
                                                
                                            

                                        

                                    

                                
                            

                            
                                
    
        Advertisement

        
        

    






                            

                            

                            

                        

                    

                
            

        

    
    
    


    
        
            Search

            
                
                    
                        Search by keyword or author
                        
                            
                            
                                
                                    
                                
                                Search
                            
                        

                    

                
            

        

    



    
        Navigation

        	
                    
                        Find a journal
                    
                
	
                    
                        Publish with us
                    
                
	
                    
                        Track your research
                    
                


    


    
	
		
			
			
	
		
			
			
				Discover content

					Journals A-Z
	Books A-Z


			

			
			
				Publish with us

					Publish your research
	Open access publishing


			

			
			
				Products and services

					Our products
	Librarians
	Societies
	Partners and advertisers


			

			
			
				Our imprints

					Springer
	Nature Portfolio
	BMC
	Palgrave Macmillan
	Apress


			

			
		

	



		
		
		
	
		
				
						
						
							Your privacy choices/Manage cookies
						
					
	
						
							Your US state privacy rights
						
						
					
	
						
							Accessibility statement
						
						
					
	
						
							Terms and conditions
						
						
					
	
						
							Privacy policy
						
						
					
	
						
							Help and support
						
						
					


		
	
	
		
			
				
					
					54.159.168.162
				

				Not affiliated

			

		
	
	
		
			
		
	
	© 2024 Springer Nature




	






    