Skip to main content
Log in

Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract.

It has been argued that the level of genetic diversity in the modern durum wheat (Triticum turgidum L. var. durum) elite germplasm may have declined due to the high selection pressure applied in breeding programs. In this study, 58 accessions covering a wide spectrum of genetic diversity of the cultivated durum wheat gene pool were characterized with 70 microsatellite loci (or simple sequence repeats, SSRs). On average, SSRs detected 5.6 different allelic variants per locus, with a mean diversity index (DI) equal to 0.56, thus revealing a diversity content comparable to those previously observed with SSRs in other small-grain cereal gene pools. The mean genetic similarity value was equal to 0.44. A highly diagnostic SSR set has been identified. A high variation in allele size was detected among SSR loci, suggesting a different suitability of these loci for estimating genetic diversity. The B genome was characterized by an overall polymorphism significantly higher than that of the A genome. Genetic diversity is organised in well-distinct sub-groups identified by the corresponding foundation-genotypes. A large portion (92.7%) of the molecular variation detected within the group of 45 modern cvs was accounted for by SSR alleles tracing back to ten foundation-genotypes; among those, the most recent CIMMYT-derived founders were genetically distant from the old Mediterranean ones. On the other hand, rare alleles were abundant, suggesting that a large number of genetic introgressions contributed to the foundation of the well-diversified germplasm herein considered. The profiles of recently released varieties indicate that the level of genetic diversity present in the modern durum wheat germplasm has actually increased over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Allard RW (1996) Genetic basis of the evolution of adaptedness in plants. Euphytica 92:1–11

    Google Scholar 

  • Allard RW (1999) History of plant population genetics. Annu Rev Genet 33:1–27

    Google Scholar 

  • Autrique E, Nachit MM, Monneveux P, Tanksley SD, Sorrells ME (1996) Genetic diversity in durum wheat based on RFLPs, morphophysiological traits, and coefficient of parentage. Crop Sci 36:735–742

    Google Scholar 

  • Blake NK, Lehfeldt BR, Lavin M, Talbert LE (1999) Phylogenetic reconstruction based on low copy DNA sequence data in an allopolyploid: the B genome of wheat. Genome 42:351–360

    CAS  PubMed  Google Scholar 

  • Barrett BA, Kidwell KK (1998) AFLP-based genetic diversity assessment among wheat cultivars from the Pacific Northwest. Crop Sci 38:1261–1271

    CAS  Google Scholar 

  • Barrier M, Friar E, Robichaux R, Purugganan M (2000) Interspecific evolution in plant microsatellite structure. Gene 241:101–105

    Article  CAS  PubMed  Google Scholar 

  • Bozzini A, Corazza L, D'Egidio MG, Di Fonzo N, La Fiandra D, Pogna NE, Poma I (1998) Durum Wheat (Triticum turgidum spp. durum). In: Scarascia Mugnozza GT, Pagnotta MA (eds) Italian contribution to plant genetics and breeding. Viterbo, Italy, 181–194

  • Brajcich P, Pfeiffer W, Autrique E (1986) Durum wheat: names, parentages, pedigrees and origins. International Maize and Wheat Improvement Center, Mexico, D.F.

    Google Scholar 

  • Chambers GK, MacAvoy ES (2000) Microsatellites: consensus and controversy. Comparative Biochem Physical Part B 126:455–476

    Article  CAS  Google Scholar 

  • Cho YG, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch SR, Park WD, Ayres N, Cartinhour S (2000) Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor Appl Genet 100:713–722

    CAS  Google Scholar 

  • Colson I, Goldstein DB (1999) Evidence for complex mutations at microsatellite loci in Drosophila. Genetics 152:617–627

    CAS  PubMed  Google Scholar 

  • Cuadrado A, Schwarzacher T (1998) The chromosomal organization of simple sequence repeats in wheat and rye genomes. Chromosoma 107:587–594

    Article  CAS  PubMed  Google Scholar 

  • Devos K, Penner G, Lee S (1995) Characterization of loci containing microsatellite sequences among Canadian wheat cultivars. Genome 38:1037–1040

    Google Scholar 

  • Dograr N, Akin-Yalin S, Akkaya MS (2000) Discriminating durum wheat cultivars using highly polymorphic simple sequence repeat DNA markers. Plant Breed 119:360–362

    Article  CAS  Google Scholar 

  • Donini P, Stephenson P, Bryan GJ, Koebner RMD (1998) The potential of microsatellites for high throughput genetic diversity assessment in wheat and barley. Genet Res Crop Evol 45:415–421

    Article  Google Scholar 

  • Donini P, Cooke RJ, Reeves JC (2000a) Molecular markers in variety and seed testing. In: Arencibia AD (ed) Plant genetic engineering: towards the third millennium. Elsevier Science, pp 27–34

  • Donini P, Law JR, Koebner RMD, Reeves JC, Cooke RJ (2000b) Temporal trends in the diversity of UK wheats. Theor Appl Genet 100:912–917

    Article  Google Scholar 

  • Dvorák J, Luo MC, Yang ZL (1998) Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in self-fertilizing and across-fertilizing Aegilops species. Genetics 148:423–434

    PubMed  Google Scholar 

  • Estoup A, Cornuet JM (1999) Microsatellite evolution: inferences from population data. In: Goldstein DB, Schlötterer C (eds) Microsatellites. Evolution and applications. Oxford University Press, Oxford, UK, 55–65

  • Eujail ME, Sorrells M, Baum P, Wolters W, Powell W (2002) Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 10:399–407

    Article  Google Scholar 

  • Fahima T, Röder MS, Grama A, Nevo E (1998) Microsatellite DNA polymorphism divergence in Triticum dicoccoides accessions highly resistant to yellow rust. Theor Appl Genet 96:187–195

    Article  CAS  Google Scholar 

  • Fahima T, Röder MS, Wendehake K, Kirzhner VM, Nevo E (2002) Microsatellite polymorphism in natural populations of wild emmer wheat, Triticum dicoccoides, in Israel. Theor Appl Genet 104:17–29

    CAS  Google Scholar 

  • Gerlach WL, Peacock WJ (1980) Chromosomal locations of highly repeated DNA sequences in wheat. Heredity 44:269–276

    CAS  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Boyko EV (1996a) Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143:1001–1012

    CAS  PubMed  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Boyko EV (1996b) Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics 144:1883–1891

    CAS  PubMed  Google Scholar 

  • Goldstein DB, Schlötterer C (1999) (eds) Microsatellites. Evolution and applications. Oxford University Press, Oxford, UK

  • Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338

    Google Scholar 

  • Graner A, Ludwig WF, Melchinger AE (1994) Relationships among european barley germplasm. II. Comparison of RFLP and pedigree data. Crop Sci 34:1199–1205

    Google Scholar 

  • Gupta PK, Varshney RK, Sharma PC, Ramesh B (1999) Molecular markers and their applications in wheat breeding. Plant Breed 118:369–390

    Article  CAS  Google Scholar 

  • Guyomarc'h H, Sourdille P, Charmet G, Edwards KJ, Bernard M (2002) Characterisation of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat. Theor Appl Genet 104:1164–1172

    CAS  Google Scholar 

  • Hoisington D, Khairallah M, Reeves T, Ribaut JM, Skovmand B, Taba S, Warburton M (1999) Plant genetic resources: what can they contribute toward increased crop productivity? Proc Natl Acad Sci USA 96:5937–5943

    Google Scholar 

  • Huang S, Sirikhachornkit S, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99:8133–8138

    Article  CAS  PubMed  Google Scholar 

  • Huang XQ, Börner A, Röder MS, Ganal MW (2002) Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet DOI 10.007/s00122-002-0959-4

  • Ishii T, McCouch SR (2000) Microsatellites and microsynteny in the chloroplast genomes of Oryza and other Gramineae species. Theor Appl Genet 100:1257–1266

    Article  CAS  Google Scholar 

  • Kantety RV, La Rota M, Matthews DE, Sorrells ME (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 48:501–510

    Article  CAS  PubMed  Google Scholar 

  • Koebner RMD, Powell W, Donini P (2001) The contribution of current and forthcoming DNA molecular marker technologies to wheat and barley genetics and breeding. In: Janick J (ed) Plant breeding reviews. John Wiley and Sons, Volume 21, pp 181–220

  • Korzun V, Röder MS, Wendehake K, Pasqualone A, Lotti C, Ganal MW, Blanco A (1999) Integration of dinucleotide microsatellites from hexaploid bread wheat into a genetic linkage map of durum wheat. Theor Appl Genet 98:1202–1207

    Article  CAS  Google Scholar 

  • Le Buanec B (1999) Plant breeding, biodiversity and yield stability. In: ISTA Secretariat (ed) Proc 1999 World Seed Conference. Agrobios, India, pp 99–114

  • Lotti C, Salvi S, Pasqualone A, Tuberosa R, Blanco A (2000) Integration of AFLP markers into an RFLP-based map of durum wheat. Plant Breed 119:393–401

    CAS  Google Scholar 

  • Lu H, Bernardo R (2001) Molecular marker diversity among current and historical maize inbreds. Theor Appl Genet 103:613–617

    CAS  Google Scholar 

  • Lynch M (1988) Estimation of relatedness by DNA fingerprinting. Mol Biol Evol 5:584–599

    CAS  PubMed  Google Scholar 

  • Ma ZQ, Röder M, Sorrells ME (1996) Frequencies and sequence characteristics of di-, tri-, and tetra-nucleotide microsatellites in wheat. Genome 39:123–130

    CAS  PubMed  Google Scholar 

  • Macaubas C, Jin L, Hallmayer J, Kimura A, Mignot E (1997) The complex mutation pattern of a microsatellite. Genome Res 7:635–641

    CAS  PubMed  Google Scholar 

  • Macaulay M, Ramsay L, Powell W, Waugh R (2001) A representative, highly informative 'genotyping set' of barley SSRs. Theor Appl Genet 102:801–809

    CAS  Google Scholar 

  • Manifesto MM, Schlatter AR, Hopp HE, Suarez EY, Dubcovski J (2001) Quantitative evaluation of genetic erosion in wheat using molecular markers. Crop Sci 41:682–690

    CAS  Google Scholar 

  • Marino CL, Nelson JC, Lu YU, Sorrells ME, Leroy P, Tuleen NA, Lopes CR, Hart GE, Lu YH (1996) Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell). Genome 39:359–366

    CAS  Google Scholar 

  • Matsuoka Y, Mitchell SE, Kresovich S, Goodman M, Doebley J (2002a) Microsatellites in Zea – variability, patterns of mutations, and use for evolutionary studies. Theor Appl Genet 104:436–450

    CAS  Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodmann MM, Sanchez JG, Buckler E, Doebley J (2002b) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084

    CAS  PubMed  Google Scholar 

  • Melchinger AE, Graner A, Singh M, Messmer M (1994) Relationships among European barley germplasm. I. Genetic diversity among winter and spring cultivars revealed by RFLPs. Crop Sci 34:1191–1199

    Google Scholar 

  • Messele T (2001) Multidisciplinary approach in estimating genetic diversity of Ethiopian tetraploid wheat (Triticum turgidum L.) landraces. PhD thesis, Wageningen University, The Netherlands

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nature Genet 30:194–200

    CAS  PubMed  Google Scholar 

  • Mumm RH, Dudley JW (1994) A classification of 148 U.S. maize inbreds. I. Cluster analysis based on RFLPs. Crop Sci 34:842–851

    Google Scholar 

  • Murray BW (1996) The estimation of genetic distance and population substructure from microsatellite allele frequency data. http://helix.biology.mcmaster.ca/brent/brent.html

  • Nachit M, Picard E, Monneveux P, Labhilili M, Baum M, Rivoal R (1998) An international durum wheat improvement programme for the Mediterranean basin. Cahiers-Agric 7:510–515

    Google Scholar 

  • Nachit MM, Elouafi I, Pagnotta MA, El Saleh A, Iacono E, Labhilili M, Asbati A, Azrak M, Hazzam H, Benscher D, Khairallah M, Ribaut JM, Tanzarella OA, Porceddu E, Sorrells ME (2001) Molecular linkage map for an intraspecific recombinant inbred population of durum wheat (Triticum turgidum L. var. durum). Theor Appl Genet 102:177–186

    CAS  Google Scholar 

  • Nordborg M, Borevitz JO, Bergelson J, Berry CC, Chory J, Hagenblad J, Kreitman M, Maloof JN, Noyes T, Oefner PJ, Stahl EA, Weigel D (2002) The extent of linkage disequilibrium in Arabidopsis thaliana. Nature Genet 30:190–193

    Article  CAS  Google Scholar 

  • Pecetti L, Annicchiarico P (1998) Agronomic value and plant type of Italian durum wheat cultivars from different eras of breeding. Euphytica 99:9–15

    Article  Google Scholar 

  • Peng J, Korol AB, Fahima T, Röder M, Ronin YI, Li YC, Nevo E (2000) Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res 10:1509–1531

    CAS  PubMed  Google Scholar 

  • Pfeiffer WH, Sayre KD, Reynolds MP (2000) Enhancing genetic grain yeld potential and yeld stability in durum wheat. In: Royo C, Di Fonzo N, Nachit MM, Araus JL (eds) Durum wheat improvement in the Mediterranean region: new challenges. Proc Sem Zaragoza, Spain, 12–14 April, 2000. Options Méditerranéennes 40:83–94

  • Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1010

    CAS  Google Scholar 

  • Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222

    Article  Google Scholar 

  • Prasad M, Varshney RK, Roy JK, Balyan H, Gupta PK (2000) The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor Appl Genet 100:584–592

    CAS  Google Scholar 

  • Ramsay L, Macaulay M, degli Ivanissevich S, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005

    CAS  PubMed  Google Scholar 

  • Röder MS, Plaschke J, Koenig SU, Börner A, Sorrels ME, Tanksley SD, Ganal MW (1995) Abundance, variability and chromosomal location of microsatellites in wheat. Mol Gen Genet 246:327–333

    PubMed  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Röder MS, Wendehake K, Korzun V, Bredemeijer G, Laborie D, Bertrand L, Isaac P, Rendell S, Jackson J, Cooke RJ, Vosman B, Ganal MW (2002) Construction and analysis of a microsatellite-based database of European wheat varieties. Theor Appl Genet 106:67–73

    PubMed  Google Scholar 

  • Rohlf FJ (1997) NTSYS-pc version 2.0. Exeter Press, East Setauket, New York, USA

  • Rosegrant MW, Sambilla MA, Gerpacio RV, Ringler C (1997) Illinois World Food and Sustainable Agriculture Program Conference. Urbana-Champaign, Illinois, USA

  • Royo C, Di Fonzo N, Nachit MM, Araus JL (eds) (2000) Durum wheat improvement in the Mediterranean region: new challenges. Proceedings of a Seminar, Zaragoza, Spain, 12–14 April, 2000. Options-Mediterraneennes 40

    Google Scholar 

  • Russell JR, Ellis RP, Thomas WTB, Waugh R, Provan J, Booth A, Fuller J, Lawrence P, Young G, Powell W (2000) A retrospective analysis of spring barley germplasm development from "foundation genotypes" to currently successful cultivars. Mol Breed 6:553–568

    Article  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA 83:1757–1761

    Google Scholar 

  • Scott KD, Eggler P, Seaton G, Rossetto M, Ablett EM, Lee LS, Henry RJ (2000) Analysis of SSRs derived from grape ESTs. Theor Appl Genet 100:723–726

    CAS  Google Scholar 

  • Smale M, Reynolds MP, Warburton M, Skovmand B, Trethowan R, Singh RP, Ortiz-Monasterio I, Crossa J, Khairallah M, Almanza M (2001) Dimensions of diversity in CIMMYT bread wheat from 1965 to 2000. Mexico, D.F., CIMMYT

  • Smith JSC, Chin ECL, Shu H, Smith OS, Wall SJ, Senior ML, Mitchell SE, Kresovich S, Ziegle J (1997) An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.). Theor Appl Genet 95:163–173

    CAS  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. WH Freeman and Co., San Francisco. California, USA

  • Soleimani VD, Soleimani BR, Baum DA, Johnson (2002) AFLP and pedigree-based genetic diversity estimates in modern cultivars of durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.]. Theor Appl Genet 104:350–357

    CAS  Google Scholar 

  • Sorrells ME, Barbosa J, Nachit MM, Ketata H, Autrique E (1995) Relationships among 81 durum genotypes based on RFLPs, gliadins, parentage, and quality traits. In: Di Fonzo N, Kaan F, Nachit M (eds) Durum wheat quality in the Mediterranean region. Proceedings of the Seminar, Zaragoza, Spain, 1993. Options Méditerranéennes, Series A, 22, pp 249–261

  • Stachel M, Lelley T, Grausgruber H, Vollmann J (2000) Application of microsatellites in wheat (Triticum aestivum L.) for studying genetic differentiation caused by selection for adaptation and use. Theor Appl Genet 100:242–248

    Article  Google Scholar 

  • Taylor JS, Durkin JMH, Breden F (1999) The death of a microsatellite: a phylogenetic perspective on microsatellite interruptions. Mol Biol Evol 16:567–572

    CAS  PubMed  Google Scholar 

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, and genetic marker potential. Genome Res 11:1441–1452

    CAS  PubMed  Google Scholar 

  • Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci USA 98:9161–9166

    CAS  PubMed  Google Scholar 

  • Vigouroux Y, McMullen M, Hittinger CT, Houchins K, Schulz L, Matsuoka Y, Doebley J (2002) Identifing genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc Natl Acad Sci USA 10.1073/pnas.112324299

  • Weir BS (1990) Genetic data analysis. Sinauer Associates, Sunderland, Massachusetts

  • Zhang W, Qu LJ, Gu H, Gao W, Liu M, Chen J, Chen Z (2002) Studies on the origin and evolution of tetraploid wheats based on the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA. Theor Appl Genet 104:1099–1106

    Article  Google Scholar 

  • Zohary D, Feldman M (1962) Hybridization between amphiploids and the evolution of polyploids in the wheat (Aegilops-Triticum) group. Evolution 16:44–61

    Google Scholar 

Download references

Acknowledgements.

Research was supported by the University of Bologna, Italy, RFO Project. Contribution of the Interdepartmental Centre for Biotechnology, University of Bologna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Sanguineti.

Additional information

Communicated by F. Salamini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maccaferri, M., Sanguineti, M.C., Donini, P. et al. Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm. Theor Appl Genet 107, 783–797 (2003). https://doi.org/10.1007/s00122-003-1319-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1319-8

Keywords.

Navigation