Skip to main content
Log in

MR-Spektroskopie bei Demenz

MR spectroscopy in dementia

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Angesichts einer immer älter werdenden Bevölkerung sind wir mit dem Problem einer zunehmenden Zahl an Demenzerkrankungen konfrontiert. Neben klinischen, neuropsychologischen und laborchemischen Verfahren spielt die MRT zur Frühdiagnostik einer Demenz eine wichtige Rolle. Morphologische Veränderungen wie auch verschiedene funktionelle Verfahren helfen bei der Diagnostik und Differenzialdiagnostik einer Demenz. Insgesamt kann mittels MR-spektroskopischer Parameter die Diagnostik einer Demenz verbessert werden. In diesem Artikel soll auf MR-spektroskopische Veränderungen im Rahmen des physiologischen Alterungsprozesses eingegangen werden. Ferner werden speziell Veränderungen bei leichter kognitiver Beeinträchtigung, einer Vorform der Alzheimer-Demenz, bei Alzheimer-, frontotemporaler, vaskulärer und Lewy-Körper-Demenz erörtert.

Abstract

With an increasingly aging population we are faced with the problem of an increasing number of dementia patients. In addition to clinical, neuropsychological and laboratory procedures, MRI plays an important role in the early diagnosis of dementia. In addition to various morphological changes functional changes can also help in the diagnosis and differential diagnosis of dementia. Overall the diagnosis of dementia can be improved by using parameters from MR spectroscopy. This article focuses on MR spectroscopic changes in the physiological aging process as well as on changes in mild cognitive impairment a precursor of Alzheimer’s dementia, in Alzheimer’s dementia, frontotemporal dementia, vascular dementia and Lewy body dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Alsop DC, Detre JA, Grossman M (2000) Assessment of cerebral blood flow in Alzheimer’s disease by spin-labeled magnetic resonance imaging. Ann Neurol 47:93–100

    Article  CAS  PubMed  Google Scholar 

  2. Angelie E, Bonmartin A, Boudraa A et al (2001) Regional differences and metabolic changes in normal aging of the human brain: proton MR spectroscopic imaging study. AJNR Am J Neuroradiol 22:119–127

    CAS  PubMed  Google Scholar 

  3. Blennow K, Hampel H (2003) CSF markers for incipient Alzheimer’s disease. Lancet Neurol 2:605–613

    Article  CAS  PubMed  Google Scholar 

  4. Boumezbeur F, Mason GF, De Graaf RA et al (2010) Altered brain mitochondrial metabolism in healthy aging as assessed by in vivo magnetic resonance spectroscopy. J Cereb Blood Flow Metab 30:211–221

    Article  CAS  PubMed  Google Scholar 

  5. Brooks JC, Roberts N, Kemp GJ et al (2001) A proton magnetic resonance spectroscopy study of age-related changes in frontal lobe metabolite concentrations. Cereb Cortex 11:598–605

    Article  CAS  PubMed  Google Scholar 

  6. Chang L, Ernst T, Poland RE et al (1996) In vivo proton magnetic resonance spectroscopy of the normal aging human brain. Life Sci 58:2049–2056

    Article  CAS  PubMed  Google Scholar 

  7. Cohen RM (2007) The application of positron-emitting molecular imaging tracers in Alzheimer’s disease. Mol Imaging Biol 9:204–216

    Article  PubMed  Google Scholar 

  8. Coulthard E, Firbank M, English P et al (2006) Proton magnetic resonance spectroscopy in frontotemporal dementia. J Neurol 253:861–868

    Article  CAS  PubMed  Google Scholar 

  9. D’Adamo AF Jr, Gidez LI, Yatsu FM (1968) Acetyl transport mechanisms. Involvement of N-acetyl aspartic acid in de novo fatty acid biosynthesis in the developing rat brain. Exp Brain Res 5:267–273

    Google Scholar 

  10. Downes CP, Macphee CH (1990) myo-inositol metabolites as cellular signals. Eur J Biochem 193:1–18

    Article  CAS  PubMed  Google Scholar 

  11. Ernst T, Chang L, Melchor R et al (1997) Frontotemporal dementia and early Alzheimer disease: differentiation with frontal lobe H-1 MR spectroscopy. Radiology 203:829–836

    CAS  PubMed  Google Scholar 

  12. Fayed N, Davila J, Oliveros A et al (2008) Utility of different MR modalities in mild cognitive impairment and its use as a predictor of conversion to probable dementia. Acad Radiol 15:1089–1098

    Article  PubMed  Google Scholar 

  13. Fernandez A, Garcia-Segura JM, Ortiz T et al (2005) Proton magnetic resonance spectroscopy and magnetoencephalographic estimation of delta dipole density: a combination of techniques that may contribute to the diagnosis of Alzheimer’s disease. Dement Geriatr Cogn Dis 20(2–3):169–177

    Google Scholar 

  14. Garcia Santos JM, Gavrila D, Antunez C et al (2008) Magnetic resonance spectroscopy performance for detection of dementia, Alzheimer’s disease and mild cognitive impairment in a community-based survey. Dement Geriatr Cogn Disord 26:15–25

    Article  Google Scholar 

  15. Griffith HR, Stewart CC, Den Hollander JA (2009) Proton magnetic resonance spectroscopy in dementias and mild cognitive impairment. Int Rev Neurobiol 84:105–131

    Article  CAS  PubMed  Google Scholar 

  16. Haga KK, Khor YP, Farrall A et al (2009) A systematic review of brain metabolite changes, measured with (1)H magnetic resonance spectroscopy, in healthy aging. Neurobiol Aging 30:353–363

    Article  CAS  PubMed  Google Scholar 

  17. Herminghaus S, Frolich L, Gorriz C et al (2003) Brain metabolism in Alzheimer disease and vascular dementia assessed by in vivo proton magnetic resonance spectroscopy. Psychiatry Res 123:183–190

    Article  CAS  PubMed  Google Scholar 

  18. Jernigan TL, Salmon DP, Butters N et al (1991) Cerebral structure on MRI, part II: Specific changes in Alzheimer’s and Huntington’s diseases. Biol Psychiatry 29:68–81

    Article  CAS  PubMed  Google Scholar 

  19. Jessen F, Gur O, Block W et al (2009) A multicenter (1)H-MRS study of the medial temporal lobe in AD and MCI. Neurology 72:1735–1740

    Article  CAS  PubMed  Google Scholar 

  20. Kabani NJ, Sled JG, Chertkow H (2002) Magnetization transfer ratio in mild cognitive impairment and dementia of Alzheimer’s type. Neuroimage 15:604–610

    Article  PubMed  Google Scholar 

  21. Kaiser LG, Schuff N, Cashdollar N et al (2005) Age-related glutamate and glutamine concentration changes in normal human brain: 1H MR spectroscopy study at 4 T. Neurobiol Aging 26:665–672

    Article  CAS  PubMed  Google Scholar 

  22. Kantarci K (2007) 1H magnetic resonance spectroscopy in dementia. Br J Radiol 80 Spec No 2:S146–S152

    Article  Google Scholar 

  23. Kantarci K, Jack CR Jr, Xu YC et al (2000) Regional metabolic patterns in mild cognitive impairment and Alzheimer’s disease: a 1H MRS study. Neurology 55:210–217

    CAS  PubMed  Google Scholar 

  24. Kantarci K, Knopman DS, Dickson DW et al (2008) Alzheimer disease: postmortem neuropathologic correlates of antemortem 1H MR spectroscopy metabolite measurements. Radiology 248:210–220

    Article  PubMed  Google Scholar 

  25. Kantarci K, Petersen RC, Boeve BF et al (2004) 1H MR spectroscopy in common dementias. Neurology 63:1393–1398

    CAS  PubMed  Google Scholar 

  26. Kantarci K, Weigand SD, Petersen RC et al (2007) Longitudinal 1H MRS changes in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 28:1330–1339

    Article  CAS  PubMed  Google Scholar 

  27. Kantarci K, Xu Y, Shiung MM et al (2002) Comparative diagnostic utility of different MR modalities in mild cognitive impairment and Alzheimer’s disease. Dement Geriatr Cogn Disord 14:198–207

    Article  PubMed  Google Scholar 

  28. Lehericy S, Marjanska M, Mesrob L et al (2007) Magnetic resonance imaging of Alzheimer’s disease. Eur Radiol 17:347–362

    Article  PubMed  Google Scholar 

  29. Martinez-Bisbal MC, Arana E, Marti-Bonmati L et al (2004) Cognitive impairment: classification by 1H magnetic resonance spectroscopy. Eur J Neurol 11:187–193

    Article  CAS  PubMed  Google Scholar 

  30. Maudsley AA, Domenig C, Govind V et al (2009) Mapping of brain metabolite distributions by volumetric proton MR spectroscopic imaging (MRSI). Magn Reson Med 61:548–559

    Article  CAS  PubMed  Google Scholar 

  31. Mellon EA, Pilkinton DT, Clark CM et al (2009) Sodium MR imaging detection of mild Alzheimer disease: preliminary study. AJNR Am J Neuroradiol 30:978–984

    Article  CAS  PubMed  Google Scholar 

  32. Metastasio A, Rinaldi P, Tarducci R et al (2006) Conversion of MCI to dementia: role of proton magnetic resonance spectroscopy. Neurobiol Aging 27:926–932

    Article  CAS  PubMed  Google Scholar 

  33. Miller BL, Chang L, Booth R et al (1996) In vivo 1H MRS choline: correlation with in vitro chemistry/histology. Life Sci 58:1929–1935

    Article  CAS  PubMed  Google Scholar 

  34. Minati L, Grisoli M, Bruzzone MG (2007) MR spectroscopy, functional MRI, and diffusion-tensor imaging in the aging brain: a conceptual review. J Geriatr Psychiatry Neurol 20:3–21

    Article  CAS  PubMed  Google Scholar 

  35. Modrego PJ, Fayed N, Pina MA (2005) Conversion from mild cognitive impairment to probable Alzheimer’s disease predicted by brain magnetic resonance spectroscopy. Am J Psychiatry 162:667–675

    Article  PubMed  Google Scholar 

  36. Pantel J, Kratz B, Essig M et al (2003) Parahippocampal volume deficits in subjects with aging-associated cognitive decline. Am J Psychiatry 160:379–382

    Article  PubMed  Google Scholar 

  37. Petersen RC, Doody R, Kurz A et al (2001) Current concepts in mild cognitive impairment. Arch Neurol 58:1985–1992

    Article  CAS  PubMed  Google Scholar 

  38. Pilatus U, Lais C, Rochmont Adu M et al (2009) Conversion to dementia in mild cognitive impairment is associated with decline of N-actylaspartate and creatine as revealed by magnetic resonance spectroscopy. Psychiatry Res 173:1–7

    Article  CAS  PubMed  Google Scholar 

  39. Ramani A, Jensen JH, Helpern JA (2006) Quantitative MR imaging in Alzheimer disease. Radiology 241:26–44

    Article  PubMed  Google Scholar 

  40. Seab JP, Jagust WJ, Wong ST et al (1988) Quantitative NMR measurements of hippocampal atrophy in Alzheimer’s disease. Magn Reson Med 8:200–208

    Article  CAS  PubMed  Google Scholar 

  41. Shonk TK, Moats RA, Gifford P et al (1995) Probable Alzheimer disease: diagnosis with proton MR spectroscopy. Radiology 195:65–72

    CAS  PubMed  Google Scholar 

  42. Simmons ML, Frondoza CG, Coyle JT (1991) Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience 45:37–45

    Article  CAS  PubMed  Google Scholar 

  43. Thomann PA, Dos Santos V, Toro P et al (2009) Reduced olfactory bulb and tract volume in early Alzheimer’s disease – a MRI study. Neurobiol Aging 30:838–841

    Article  PubMed  Google Scholar 

  44. Thomann PA, Kaiser E, Schonknecht P et al (2009) Association of total tau and phosphorylated tau 181 protein levels in cerebrospinal fluid with cerebral atrophy in mild cognitive impairment and Alzheimer disease. J Psychiatry Neurosci 34:136–142

    PubMed  Google Scholar 

  45. Waldman AD, Rai GS (2003) The relationship between cognitive impairment and in vivo metabolite ratios in patients with clinical Alzheimer’s disease and vascular dementia: a proton magnetic resonance spectroscopy study. Neuroradiology 45:507–512

    Article  CAS  PubMed  Google Scholar 

  46. Watson R, Blamire AM, O’Brien JT (2009) Magnetic resonance imaging in Lewy body dementias. Dement Geriatr Cogn Disord 28:493–506

    Article  PubMed  Google Scholar 

  47. Xuan X, Ding M, Gong X (2008) Proton magnetic resonance spectroscopy detects a relative decrease of N-acetylaspartate in the hippocampus of patients with dementia with Lewy bodies. J Neuroimaging 18:137–141

    Article  PubMed  Google Scholar 

  48. Yoshiura T, Hiwatashi A, Noguchi T et al (2009) Arterial spin labelling at 3 T MR imaging for detection of individuals with Alzheimer’s disease. Eur Radiol 19:2819–2825

    Article  Google Scholar 

  49. Zhu X, Schuff N, Kornak J et al (2006) Effects of Alzheimer disease on fronto-parietal brain N-acetyl aspartate and myo-inositol using magnetic resonance spectroscopic imaging. Alzheimer Dis Assoc Disord 20:77–85

    Article  PubMed  Google Scholar 

  50. Ziegler U, Doblhammer G (2009) Prevalence and incidence of dementia in Germany – a study based on data from the public sick funds in 2002. Gesundheitswesen 71:281–290

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hauser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauser, T., Gerigk, L., Giesel, F. et al. MR-Spektroskopie bei Demenz. Radiologe 50, 791–798 (2010). https://doi.org/10.1007/s00117-009-1947-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-009-1947-3

Schlüsselworte

Keywords

Navigation