Skip to main content
Log in

Chemo-ecological studies on hexactinellid sponges from the Southern Ocean

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Hexactinellids (glass sponges) are an understudied class with syncytial organization and poor procariotic associations, thought to lack defensive secondary metabolites. Poriferans, though, are outstanding sources of bioactive compounds; nonetheless, a growing suspicion suggests that many of these chemicals could be symbiont-derived. In Polar latitudes, sponges are readily invaded by diatoms, which could provide natural products. Hexactinellids are typical of deep waters; but in Antarctica, they dominate the upper shelf providing shelter and food supply to many opportunistic mesograzers and macroinvertebrates, which exert strong ecological pressures on them. Aiming to examine the incidence of defensive activities of hexactinellids against consumption, feeding experiments were conducted using their lipophilic fractions. Antarctic hexactinellid and demosponge extracts were tested against the asteroid Odontaster validus and the amphipod Cheirimedon femoratus as putative sympatric, omnivorous consumers. Hexactinellids yielded greater unpalatable activities towards the amphipod, while no apparent allocation of lipophilic defenses was noted. After chemical analyses on the lipophilic fractions from these Antarctic glass sponges, quite similar profiles were revealed, and no peculiar secondary metabolites, comparable to those characterizing other poriferans, were found. Instead, the lipidic compounds 5α(H)-cholestan-3-one and two glycoceramides were isolated for their particular outspread presence in our samples. The isolated compounds were further assessed in asteroid feeding assays, and their occurrence was evaluated for chemotaxonomical purposes in all the Antarctic samples as well as in glass sponges from other latitudes by NMR and MS. Characteristic sphingolipids are proposed as chemical markers in Hexactinellida, with possible contributions to the classification of this unsettled class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbas S, Sims J, Kelly M, Bowling J, Hamman M (2011) Advancement into the Arctic region for bioactive secondary metabolites. Mar Drugs 9:2423–2437

    Article  PubMed  CAS  Google Scholar 

  • Amsler CD, Moeller CB, McClintock JB, Iken KB, Baker BJ (2000) Chemical defenses against diatom fouling in Antarctic marine sponges. Biofouling 16:29–45

    Article  CAS  Google Scholar 

  • Amsler MO, McClintock JB, Amsler CD, Angus RA, Baker BJ (2009) An evaluation of sponge-associated amphipods from the Antarctic Peninsula. Antarc Sci 21(6):579–589

    Article  Google Scholar 

  • Aumack CF, Amsler CD, McClintock JB, Baker BJ (2010) Chemically mediated resistance to mesoherbivory in finely branched macroalgae along the western Antarctic Peninsula. Eur J Phycol 45(1):19–26

    Article  Google Scholar 

  • Avila C, Iken K, Fontana A, Gimino G (2000) Chemical ecology of the Antarctic nudibranch Bathydoris hodgsoni Eliot, 1907: defensive role and origin of its natural products. J Exp Mar Biol Ecol 252:27–44

    Article  PubMed  CAS  Google Scholar 

  • Avila C, Taboada S, Núñez-Pons L (2008) Marine Antarctic chemical ecology: what is next? Mar Ecol 29:1–70

    Article  CAS  Google Scholar 

  • Ayling A (1983) Growth and regeneration rates in thinly encrusting Desmospongiae from temperate waters. Biol Bull 165:343–352

    Article  Google Scholar 

  • Barthel D (1992) Antarctic hexactinellids: a taxonomically difficult, but ecologically important benthic component. Verh Dtsch Zool Ges 85(2):271–276

    Google Scholar 

  • Barthel D (1995) Tissue composition of sponges from the Weddell Sea, Antarctica—not much meat on the bones. Mar Ecol Prog Ser 123(1–3):149–153

    Article  Google Scholar 

  • Barthel D, Gutt J (1992) Sponge associations in the eastern Weddell Sea. Antarc Sci 4:137–150

    Google Scholar 

  • Barthel D, Tendal OS (1994) Antarctic Hexactinellida. In: Wägele JW, Sieg J (eds) Synopses of Antarctic benthos. Koeltz Scientific Books, Champaing, Illinois, pp 9–135

    Google Scholar 

  • Bavestrello G, Arillo A, Calcinai B, Cattaneo-Vietti R, Cerrano C, Gaino E, Penna A, Sara M (2000) Parasitic diatoms inside Antarctic sponges. Biol Bull 198(1):29–33

    Article  PubMed  CAS  Google Scholar 

  • Bergquist PR, Hofheinz W, Oesterhelt G (1980) Sterol composition and the classification of the Demospongiae. Biochem SystEcol 8(4):423–435

    Article  CAS  Google Scholar 

  • Bergquist PR, Lavis A, Cambie RC (1986) Sterol composition and classification of the Porifera. Biochem Syst Ecol 14(1):105–112

    Article  CAS  Google Scholar 

  • Bergquist PR, Karuso P, Cambie RC, Smith DJ (1991) Sterol composition and classification of the Porifera. Biochem Syst Ecol 19(1):17–24

    Article  CAS  Google Scholar 

  • Blumenberg M, Thiel V, Pape T, Michaelis W (2002) The steroids of hexactinellid sponges. Naturwissenschaften 89(9):415–419

    Article  PubMed  CAS  Google Scholar 

  • Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2011) Marine natural products. Nat Prod Rep 28:196–268

    Article  PubMed  CAS  Google Scholar 

  • Bobzin SC, Faulkner DJ (1992) Chemistry and chemical ecology of the Bahamian sponge Aplysilla glacialis. J Chem Ecol 18:309–332

    Article  CAS  Google Scholar 

  • Bregazzi PK (1972) Life cycles and seasonal movements of Cheirimedon femoratus and Tryphosella kergueleni Crustacea Amphipoda. Brit Antarct Surv B 30:1–34

    Google Scholar 

  • Breitmaier E, Voelter W (1989) 13C NMR spectra of natural products. In: Ebel HF (ed) Carbon-13 NMR spectroscopy. VCH, New York, pp 340–358

    Google Scholar 

  • Brusca RC, Brusca GJ (2003) Invertebrates. McGraw-Hill Interamericana en España, SAU, Madrid

    Google Scholar 

  • Cattaneo-Vietti R, Bavestrello G, Cerrano C, Sarà A, Benatti U, Giovine M, Gaino E (1996) Optical fibres in an Antarctic sponge. Nature 383:397–398

    Article  CAS  Google Scholar 

  • Cerrano C, Arillo A, Bavestrello G, Calcinai B, Cattaneo-Vietti R, Penna A, Sara M, Totti C (2000) Diatom invasion in the Antarctic hexactinellid sponge Scolymastra joubini. Polar Biol 23(6):441–444

    Article  Google Scholar 

  • Cerrano C, Calcinai B, Cucchiari E, Di Camillo C, Nigro M, Regoli F, Sara A, Schiaparelli S, Totti C, Bavestrello G (2004a) Are diatoms a food source for Antarctic sponges? Chem Ecol 20:S57–S64

    Article  Google Scholar 

  • Cerrano C, Calcinai B, Cucchiari E, Di Camillo C, Totti C, Bavestrello G (2004b) The diversity of relationships between Antarctic sponges and diatoms: the case of Mycale acerata Kirkpatrick, 1907 (Porifera, Demospongiae). Polar Biol 27(4):231–237

    Article  Google Scholar 

  • Chanas B, Pawlik JR (1995) Defenses of Caribean sponges against predatory reef fish. II. Spicules, tissue toughness, and nutritional quality. Mar Ecol Prog Ser 127:195–211

    Article  Google Scholar 

  • Cruz-Rivera E, Hay ME (2003) Prey nutritional quality interacts with chemical defenses to affect consumer feeding and fitness. Ecol Monogr 73(3):483–506

    Article  Google Scholar 

  • Dayton PK (1979) Observations of growth, dispersal and population dynamics of some sponges in McMurdo Sound, Antarctica. In: Levi N and Bourny-Esnault (eds) Sponge Biology. Centre de recherché Scientifique, Paris, pp. 271–282

  • Dayton PK, Robillia GA, Paine RT, Dayton LB (1974) Biological accommodation in benthic community at McMurdo Sound Antarctica. Ecol Monog 44(1):105–128

    Article  Google Scholar 

  • De Broyer C, Lowry JK, Jazdzewski k, Robert H (2007) Catalogue of the Gammaridean and Corophiidean Amphipoda of the Southern Ocean, with distribution and ecological data. In: De Broyer C (ed) Census of Antarctic Marine Life: Synopsis of the Amphipoda of the Southern Ocean. Bull Inst R Sc N B-B 77, supplement 1, pp. 1–325

  • Duffy JE, Paul VJ (1992) Prey nutritional quality and the effectiveness of chemical defenses against tropical reef fishes. Oecologia 90(3):333–339

    Article  Google Scholar 

  • Falsone G, Budzikiewicz H, Wendisch D (1987) Constituents of euphorbiaceae. 9. New cerebrosides from Euphorbia biglandulosa desf. Z Naturforsch B 42(11):1476–1480

    CAS  Google Scholar 

  • Furrow FB, Amsler CD, McClintock JB, Baker BJ (2003) Surface sequestration of chemical feeding deterrents in the Antarctic sponge Latrunculia apicalis as an optimal defense against sea star spongivory. Mar Biol 143(3):443–449

    Article  Google Scholar 

  • Gaino E, Bavestrello G, Cattaneovietti R, Sara M (1994) Scanning electron-microscope evidence for diatom uptake by 2 Antarctic sponges. Polar Biol 14(1):55–58

    Article  Google Scholar 

  • Goad LJ (1981) Sterol biosynthesis and metabolism in marine-invertebrates. Pure Appl Chem 53(4):837–852

    Article  CAS  Google Scholar 

  • Göcken C, Janussen D (2011) ANT XXIV/2 (SYSTCO) Hexactinellida (Porifera) and bathymetric traits of Antarctic glass sponges (incorporating ANDEEP-material); including an emendation of the rediscovered genus Lonchiphora. Deep-Sea Res II

  • Guella G, Mancini I, Pietra F (1988) Isolation of ergosta-4, 24(28)-dien-3-one from both Astrophorida demosponges and sub-Antarctic hexactinellides. Comp Biochem Phys B Comp Biochem 90(1):113–115

    Article  Google Scholar 

  • Gutt J (2007) Antarctic macro-zoobenthic communities: a review and an ecological classification. Antartc Sci 19(2):165–182

    Article  Google Scholar 

  • Hagernann A, Voigt O, Worheide G, Thiel V (2008) The sterols of calcareous sponges (Calcarea, Porifera). Chem Phys Lipids 156(1–2):26–32

    Article  Google Scholar 

  • Hayakawa K, Handa N, Ikuta N, Fukuchi M (1996) Downward fluxes of fatty acids and hydrocarbons during a phytoplankton bloom in the Austral summer in Breid Bay, Antarctica. Org Geochem 24(5):511–521

    Article  CAS  Google Scholar 

  • Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55(2):167–177

    Article  PubMed  CAS  Google Scholar 

  • Huang YM, Amsler MO, McClintock JB, Amsler CD, Baker BJ (2007) Patterns of gammaridean amphipod abundance and species composition associated with dominant subtidal macroalgae from the western Antarctic Peninsula. Polar Biol 30(11):1417–1430

    Article  Google Scholar 

  • Janussen D, Tendal OS (2007) Diversity and distribution of Porifera in the bathyal and abyssal Weddell Sea and adjacent areas. Deep-Sea Res Pt II 54(16–17):1864–1875

    Google Scholar 

  • Jayatilake GS, Thornton MP, Leonard AC, Grimwade JE, Baker BJ (1996) Metabolites from an Antarctic sponge-associated bacterium, Pseudomonas aeruginosa. J Nat Prod 59(3):293–296

    Article  PubMed  CAS  Google Scholar 

  • Jones AC, Blum JE, Pawlik JR (2005) Testing for defensive synergy in Caribbean sponges: bad taste or glass spicules? J Exp Mar Biol Ecol 322(1):67–81

    Article  Google Scholar 

  • Kunzmann K (1996) Associated fauna of selected sponges (Hexactinellida and Demospongiae) from the Weddell Sea, Antarctica. Ber Polarforsch 210:1–93

    Google Scholar 

  • Lawson MP, Bergquist PR, Cambie RC (1984) Fatty-acid composition and the classification of the Porifera. Biochem Syst Ecol 12(4):375–393

    Article  CAS  Google Scholar 

  • Lawson MP, Stoilov IL, Thompson JE, Djerassi C (1988) Sterols in marine invertebrates, 59. Cell-membrane localization of sterols with conventional and unusual side-chains in 2 marine demosponges. Lipids 23(8):750–754

    Article  PubMed  CAS  Google Scholar 

  • Leong W, Pawlik JR (2010) Evidence of a resource trade-off between growth and chemical defenses among Caribbean coral reef sponges. Mar Ecol Prog Ser 406:71–78

    Article  Google Scholar 

  • Leys SP (2003) The significance of syncytial tissues for the position of the Hexactinellida in the metazoa. Integr Comp Biol 43(1):19–27

    Article  PubMed  Google Scholar 

  • Leys SP, Lauzon NRJ (1998) Hexactinellid sponge ecology: growth rates and seasonality in deep water sponges. J Exp Mar Biol Ecol 230(1):111–129

    Article  Google Scholar 

  • Leys SP, Mackie GO, Meech RW (1999) Impulse conduction in a sponge. J Exp Biol 202(9):1139–1150

    PubMed  Google Scholar 

  • Leys SP, Mackie GO, Reiswig HM (2007) The biology of glass sponges. Adv Mar Biol 52:1–145

    Article  PubMed  CAS  Google Scholar 

  • McClintock JB (1987) Investigation of the relationship between invertebrate predation and biochemical composition, energy content, spicule armament and toxicity of benthic sponges at McMurdo Sound, Antarctica. Mar Biol 94(3):479–487

    Article  CAS  Google Scholar 

  • McClintock JB (1994) Trophic biology of Antarctic echinoderms. Mar Ecol Prog Ser 111:191–202

    Article  Google Scholar 

  • McClintock JB, Baker BJ, Amsler CD, Barlow TL (2000) Chemotactic tube-foot responses of the spongivorous sea star Perknaster fuscus to organic extracts of sponges from McMurdo Sound, Antarctica. Antarc Sci 12(1):41–46

    Google Scholar 

  • McClintock JB, Amsler CD, Baker BJ, Van Soest R (2005) Ecology of Antarctic marine sponges: an overview. Integr Comp Biol 45:359–368

    Article  PubMed  Google Scholar 

  • McClintock JB, Amsler CD, Baker B (2010) Overview of the chemical ecology of benthic marine invertebrates along the western Antarctic Peninsula. Integr Comp Biol 50(6):967–980

    Article  PubMed  Google Scholar 

  • Müller WEG, Wendt K, Geppert C, Wiens M, Reiber A, Schröder HC (2006) Novel photoreception system in sponges?: unique transmission properties of the stalk spicules from the hexactinellid Hyalonema sieboldi. Biosens Bioelectron 21(7):1149–1155

    Article  PubMed  Google Scholar 

  • Muralidhar P, Radhika P, Krishna N, Venkata Rao D, Bheemasankara Rao C (2003) Sphingolipids from marine organisms: a review. Nat Prod Sci 9(9):117–142

    CAS  Google Scholar 

  • Nyssen F (2005) Role of benthic amphipods in Antarctic trophodynamics: a multidisciplinary study. University of Liege, Dissertation

    Google Scholar 

  • Olguín HF, Alder VA (2011) Species composition and biogeography of diatoms in Antarctic and sub-Antarctic (Argentine shelf) waters (37–761S). Deep-Sea Res II 58:139–152

    Article  Google Scholar 

  • Padrón JM (2006) Sphingolipids in anticancer therapy. Curr Med Chem 13:755–770

    Article  PubMed  Google Scholar 

  • Paul VJ (1992) Ecological roles of marine natural products. Comstock Publications Association, Ithaca, New York

    Google Scholar 

  • Peters KJ, Amsler CD, McClintock JB, van Soest RWM, Baker BJ (2009) Palatability and chemical defenses of sponges from the western Antarctic Peninsula. Mar Ecol Prog Ser 385:77–85

    Article  CAS  Google Scholar 

  • Reiswig HM, Mackie GO (1983) Studies on Hexactinellid sponges. 3. The taxonomic status of Hexactinellida within the Porifera. Philos T Roy Soc B 301(1107):419–428

    Article  Google Scholar 

  • Rhoades DF (1979) Evolution of plant chemical defense against herbivores. In: Rosenthal GA and Janzen DH (eds) Herbivores: their interaction with secondary plant metabolites. Academic Press, Inc., New York, USA, pp. 3–54

  • Rhoades DF, Gates RG (1976) Toward a general theory of plant antiherbivore chemistry. Recent Adv Phytochem 10:168–213

    CAS  Google Scholar 

  • Sabdono A, Radjasa OK (2008) Microbial symbionts in marine sponges: marine natural product factory. J Coast Dev 11(2):57–61

    Google Scholar 

  • Santalova EA, Makarieva TN, Gorshkova IA, Dmitrenok AS, Krasokhin VB, Stonik VA (2004) Sterols from six marine sponges. Biochem Syst Ecol 32:153–167

    Article  CAS  Google Scholar 

  • Santalova EA, Makarieva TN, Ponomarenko LP, Denisenko VA, Krasokhin VB, Mollo E, Cimino G, Stonik VA (2007) Sterols and related metabolites from five species of sponges. Biochem Syst Ecol 35:439–446

    Article  CAS  Google Scholar 

  • Sarà M, Bavestrello G, Cattaneo-Vietti R, Cerrano C (1998) Endosymbiosis in sponges: relevance for epigenesis and evolution. Symbiosis 25(1–3):57–70

    Google Scholar 

  • Seldes AM, Rovirosa J, SanMartin A, Gros EG (1986) Steroids from aquatic organisms, 12. Sterols from the antarctic sponge Homaxinella balfourensis (Ridley and Dendy). Comp Biochem Physiol B 83(4):841–842

    Article  Google Scholar 

  • Seldes A, Romero M, Gros E, Darias J, Rovirosa J, San Martin A (1990a) Esteroides de las esponjas antárticas Cinachyra barbata Sollas y Xestospongia sp. Serie Científica Instituto Antártico Chileno 40:81–97

    Google Scholar 

  • Seldes AM, Deluca ME, Gros EG, Rovirosa J, SanMartin A, Darias J (1990b) Steroids from aquatic organisms. 19. New sterols from antarctic sponge Artemisina apollonis. Z Naturforsch B 45(1):83–86

    CAS  Google Scholar 

  • Slattery M, Hamann MT, McClintock JB, Perry TL, Puglisi MP, Yoshida WY (1997) Ecological roles for water-borne metabolites from Antarctic soft corals. Mar Ecol Prog Ser 161:133–144

    Article  CAS  Google Scholar 

  • Smith AC, Goodfellow R, Goad LJ (1972) The intermediacy of 3-oxo steroids in the conversion of cholest-5-en-3β-ol into 5α-cholestan-3β-ol by the starfish Asterias rubens and Porania pulvillus. Biochem J 128:1371–1372

    PubMed  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of stadistics in biological research. Freeman, W. H. and Co.: New York, p 937

  • Sotka EE, Forbey J, Horn M, Poore AGB, Raubenheimer D, Whalen KE (2009) The emerging role of pharmacology in understanding consumer–prey interactions in marine and freshwater systems. Integr Comp Biol 49(3):291–313

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi M, Sakane T, Yanagi M, Yamasato K, Hamana K, Yokota A (1995) Taxonomic study of bacteria isolated from plants—proposal of Sphingomonas rosa sp-nov, Sphingomonas pruni sp-nov, Sphingomonas asaccharolytica sp-nov, and Sphingomonas mali sp-nov. Int J Syst Bacteriol 45(2):334–341

    Article  PubMed  CAS  Google Scholar 

  • Tan RX, Chen JH (2003) The cerebrosides. Natural Product Reports 20(5):509–534. doi:10.1039/b307243f

    Article  PubMed  CAS  Google Scholar 

  • Taylor GD, Smith SO, Gagosian RB (1981) Use of microbial enrichments for the study of the anaerobic degradation of cholesterol. Geochim Cosmochim Ac 45:2161–2168

    Article  CAS  Google Scholar 

  • Taylor MW, Hill RT, Piel J, Thacker RW, Hentschel U (2007a) Soaking it up: the complex lives of marine sponges and their microbial associates. ISME J 1(3):187–190

    Article  PubMed  Google Scholar 

  • Taylor MW, Radax R, Steger D, Wagner M (2007b) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347

    Article  PubMed  CAS  Google Scholar 

  • Thiel V, Blumenberg M, Hefter J, Pape T, Pomponi S, Reed J, Reitner J, Worheide G, Michaelis W (2002) A chemical view of the most ancient metazoan—biomarker chemotaxonomy of hexactinellid sponges. Naturwissenschaften 89(2):60–66

    Article  PubMed  CAS  Google Scholar 

  • Thoms C, Schupp PJ, Custodio MR, Lobo-Hajdu G, Hajdu E, Muricy G (2007) Chemical defense strategies in sponges: a review. Porifera research: biodiversity, innovation and sustainability [Serie Livros 28]: 627–637

  • Tomaschko KH (1994) Ecdysteroids from Pycnogonum litorale (Arthropoda, Pantopoda) act as chemical defense against Carcinus maenas (Crustacea, Decapoda). J Chem Ecol 20(7):1445–1455

    Article  CAS  Google Scholar 

  • Tompkins-MacDonald GJ, Leys SP (2008) Glass sponges arrest pumping in response to sediment: implications for the physiology of the hexactinellid conduction system. Mar Biol 154(6):973–984

    Article  Google Scholar 

  • Toth GB, Karlsson M, Pavia H (2007) Mesoherbivores reduce net growth and induce chemical resistance in natural seaweed populations. Oecologia 152(2):245–255

    Article  PubMed  Google Scholar 

  • van Meer G, Hoetzl S (2010) Sphingolipid topology and the dynamic organization and function of membrane proteins. FEBS Lett 584(9):1800–1805

    Article  PubMed  Google Scholar 

  • Waddell B, Pawlik JR (2000) Defenses of Caribbean sponges against invertebrate predators. II. Assays with sea stars. Mar Ecol Prog Ser 195:133–144

    Article  Google Scholar 

  • Walters KD, Pawlik JR (2005) Is there a trade-off between wound-healing and chemical defenses among Caribbean reef sponges? Integr Comp Biol 45(2):352–358

    Article  PubMed  Google Scholar 

  • Wulff J (2010) Regeneration of sponges in ecological context: is regeneration an integral part of life history and morphological strategies? Integr Comp Biol 50(4):494–505

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Vázquez, S. Taboada, B. Figuerola, M. Paone and E. Manzo for their precious help in the lab. Thanks are due to D. Janussen, S. Leys, T. Pérez and M. Bergmann (AWI) for kindly supplying hexactinellid samples from Northern latitudes. Also, we are grateful to W. Arntz and the crew of R/V Polarstern. UTM (CSIC), R/V “Las Palmas” and BAE “Gabriel de Castilla” crews provided logistic support. The “Centres Científics i Tecnològics” of the UB also provided technical support. Funding was provided by the Ministry of Science and Innovation of Spain (CGL2004-03356/ANT, CGL2007-65453/ANT and CGL2010-17415/ANT) and REDES Project (CGL2009/06185-E).

Ethical standards

We declare that this research conforms to the legal requirements of the Spanish and Italian laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Núñez-Pons.

Additional information

Communicated by: Sven Thatje

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 56.5  kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Núñez-Pons, L., Carbone, M., Paris, D. et al. Chemo-ecological studies on hexactinellid sponges from the Southern Ocean. Naturwissenschaften 99, 353–368 (2012). https://doi.org/10.1007/s00114-012-0907-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-012-0907-3

Keywords

Navigation