Skip to main content
Log in

Kombinierte Positronenemissions-Magnetresonanztomographie (PET/MRT) bei Kindern und Jugendlichen

Combined positron emission tomography and magnetic resonance imaging (PET/MRI) in children and adolescents

  • Leitthema
  • Published:
Monatsschrift Kinderheilkunde Aims and scope Submit manuscript

Zusammenfassung

Die kombinierte Positronenemissions-Magnetresonanztomographie (PET/MRT) wurde erstmals 2010 klinisch angewendet. Sie ermöglicht die simultane Erfassung hochaufgelöster Anatomie und Morphologie mithilfe der MRT auf der einen Seite sowie spezifischer Informationen über funktionelle Gewebeeigenschaften, wie Vitalität und Differenzierung, mithilfe der PET, aber auch mithilfe spezieller MRT-Methoden auf der anderen Seite. Hierdurch kann die umfassende Beurteilung onkologischer Erkrankungen und auch nichtmaligner Krankheitsbilder erfolgen, die in dieser Weise mit keiner anderen Modalität möglich wäre. Die PET/MRT bildet damit eine Grundlage für eine personalisierte Therapie. Insbesondere aufgrund der im Vergleich zur Positronenemissions-Computertomographie (PET/CT) signifikant verringerten diagnostischen Strahlenexposition wurde die PET/MRT von Anfang an als Methode der Wahl für die pädiatrische Bildgebung angesehen. Eine Reduktion der Dosis über 90 % ist in der klinischen Praxis möglich. In dieser Übersichtsarbeit werden wesentliche Grundlagen der Methode sowie typische Indikationen im Kindes- und Jugendalter beschrieben.

Abstract

The combined positron emission tomography and magnetic resonance imaging (PET/MRI) was first used clinically in 2010. It enables the simultaneous acquisition of highly resolved anatomical and morphological features by MRI and specific information on functional tissue conditions, such as vitality and differentiation by PET as well as by special MRI methods. Therefore, PET/MRI enables a comprehensive assessment of oncological diseases and also of non-malignant disorders that would not be possible with any other modality. PET/MRI thus forms the basis for personalized treatment. Particularly due to the significantly reduced diagnostic radiation exposure compared to PET-computed tomography (PET/CT), PET/MRI has been considered as the method of choice for pediatric imaging right from the beginning. In the daily routine, a radiation dose reduction of over 90% is possible. This review describes the essential principles of the method and typical indications in childhood and adolescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Delso G et al (2011) Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 52(12):1914–1922

    Article  PubMed  Google Scholar 

  2. Schafer JF et al (2014) Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology 273(1):220–231

    Article  PubMed  Google Scholar 

  3. Gatidis S et al (2016) Comprehensive oncologic imaging in infants and preschool children with substantially reduced radiation exposure using combined simultaneous (1)(8)F-Fluorodeoxyglucose positron emission Tomography/magnetic resonance imaging: a direct comparison to (1)(8)F-Fluorodeoxyglucose positron emission Tomography/computed Tomography. Invest Radiol 51(1):7–14

    Article  PubMed  Google Scholar 

  4. Pfluger T et al (2012) Diagnostic value of combined (1)(8)F-FDG PET/MRI for staging and restaging in paediatric oncology. Eur J Nucl Med Mol Imaging 39(11):1745–1755

    Article  PubMed  Google Scholar 

  5. Gatidis S et al (2017) PET/MRI in children. Eur J Radiol. https://doi.org/10.1016/j.ejrad.2017.01.018

    Article  PubMed  Google Scholar 

  6. Levin CS et al (2016) Design features and mutual compatibility studies of the time-of-flight PET capable GE SIGNA PET/MR system. IEEE Trans Med Imaging 35(8):1907–1914

    Article  PubMed  Google Scholar 

  7. Bezrukov I et al (2015) Quantitative evaluation of segmentation- and atlas-based attenuation correction for PET/MR on pediatric patients. J Nucl Med 56(7):1067–1074

    Article  PubMed  Google Scholar 

  8. Hofmann M et al (2009) Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging 36(1):S93–S104

    Article  PubMed  Google Scholar 

  9. Brendle CB et al (2013) Simultaneously acquired MR/PET images compared with sequential MR/PET and PET/CT: alignment quality. Radiology 268(1):190–199

    Article  PubMed  Google Scholar 

  10. Wurslin C et al (2013) Respiratory motion correction in oncologic PET using T1-weighted MR imaging on a simultaneous whole-body PET/MR system. J Nucl Med 54(3):464–471

    Article  PubMed  CAS  Google Scholar 

  11. Gatidis S et al (2016) Defining optimal tracer activities in pediatric oncologic whole-body 18F-FDG-PET/MRI. Eur J Nucl Med Mol Imaging. https://doi.org/10.1007/s00259-016-3503-5

    Article  PubMed  Google Scholar 

  12. Chawla SC et al (2010) Estimated cumulative radiation dose from PET/CT in children with malignancies: a 5-year retrospective review. Pediatr Radiol 40(5):681–686

    Article  PubMed  Google Scholar 

  13. Johnsen B et al (2017) Estimated cumulative radiation dose received by diagnostic imaging during staging and treatment of operable Ewing sarcoma 2005–2012. Pediatr Radiol 47(1):82–88

    Article  PubMed  Google Scholar 

  14. Nievelstein RA et al (2012) Radiation exposure and mortality risk from CT and PET imaging of patients with malignant lymphoma. Eur Radiol 22(9):1946–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Umutlu L et al (2019) Whole-body [18F]-FDG-PET/MRI for oncology: a consensus recommendation. Rofo 191(4):289–297

    Article  PubMed  Google Scholar 

  16. Parysow O et al (2007) Low-dose oral propranolol could reduce brown adipose tissue F‑18 FDG uptake in patients undergoing PET scans. Clin Nucl Med 32(5):351–357

    Article  PubMed  Google Scholar 

  17. Stauss J et al (2008) Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology. Eur J Nucl Med Mol Imaging 35(8):1581–1588

    Article  CAS  PubMed  Google Scholar 

  18. Aghighi M et al (2016) Speeding up PET/MR for cancer staging of children and young adults. Eur Radiol 26(12):4239–4248

    Article  PubMed  PubMed Central  Google Scholar 

  19. Klenk C et al (2016) Progressing toward a cohesive pediatric 18F-FDG PET/MR protocol: is administration of gadolinium chelates necessary? J Nucl Med 57(1):70–77

    Article  CAS  PubMed  Google Scholar 

  20. Franzius C et al (2010) Procedure guidelines for whole-body 18F-FDG PET and PET/CT in children with malignant diseases. Nuklearmedizin 49(6):225–233 (quiz N60–1)

    Article  CAS  PubMed  Google Scholar 

  21. Gatidis S et al (2016) Simultaneous whole-body PET-MRI in pediatric oncology : more than just reducing radiation? Radiologe 56(7):622–630

    Article  CAS  PubMed  Google Scholar 

  22. Asenbaum U et al (2017) Bone marrow involvement in malignant Lymphoma: evaluation of quantitative PET and MRI biomarkers. Acad Radiol. https://doi.org/10.1002/jmri.25439

    Article  PubMed  Google Scholar 

  23. Lee JW et al (2015) Prognostic value of pretreatment FDG PET in pediatric neuroblastoma. Eur J Radiol 84(12):2633–2639

    Article  PubMed  Google Scholar 

  24. Goo HW (2010) Whole-body MRI of neuroblastoma. Eur J Radiol 75(3):306–314

    Article  PubMed  Google Scholar 

  25. Bar-Sever Z et al (2018) Guidelines on nuclear medicine imaging in neuroblastoma. Eur J Nucl Med Mol Imaging 45(11):2009–2024

    Article  CAS  PubMed  Google Scholar 

  26. Serin HI et al (2016) Diffusion weighted imaging in differentiating malignant and benign neuroblastic tumors. Jpn J Radiol 34(9):620–624

    Article  CAS  PubMed  Google Scholar 

  27. Storz C et al (2019) Diagnostic value of whole-body MRI in Opsoclonus-myoclonus syndrome: a clinical case series (3 case reports). BMC Med Imaging 19(1):70

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schaefer JF et al (2019) Whole-body MRI in children and adolescents - S1 guideline. Rofo 191(7):618–625

    Article  PubMed  Google Scholar 

  29. Piccardo A et al (2019) Diagnosis, treatment response and prognosis. The role of (18)F-DOPA PET/CT in children affected by neuroblastoma in comparison with (123)I-mIBG scan. The first prospective study. J Nucl Med. https://doi.org/10.2967/jnumed.119.232553

    Article  PubMed  Google Scholar 

  30. Li C et al (2018) Prognostic value of metabolic indices and bone marrow uptake pattern on preoperative 18F-FDG PET/CT in pediatric patients with neuroblastoma. Eur J Nucl Med Mol Imaging 45(2):306–315

    Article  PubMed  Google Scholar 

  31. Zhang H et al (2014) Imaging the norepinephrine transporter in neuroblastoma: a comparison of [18F]-MFBG and 123I-MIBG. Clin Cancer Res 20(8):2182–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pandit-Taskar N et al (2018) Biodistribution and dosimetry of (18)F-meta-fluorobenzylguanidine: a first-in-human PET/CT imaging study of patients with neuroendocrine malignancies. J Nucl Med 59(1):147–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Voss SD et al (2007) Positron emission tomography (PET) imaging of neuroblastoma and melanoma with 64Cu-SarAr immunoconjugates. Proc Natl Acad Sci U S A 104(44):17489–17493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Butch ER et al (2019) Positron emission tomography detects in vivo expression of disialoganglioside GD2 in mouse models of primary and metastatic osteosarcoma. Cancer Res 79(12):3112–3124

    Article  CAS  PubMed  Google Scholar 

  35. Poeppel TD et al (2011) 68 Ga-DOTATOC versus 68 Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med 52(12):1864–1870

    Article  CAS  PubMed  Google Scholar 

  36. Sawicki LM et al (2017) Evaluation of (68)Ga-DOTATOC PET/MRI for whole-body staging of neuroendocrine tumours in comparison with (68)Ga-DOTATOC PET/CT. Eur Radiol 27(10):4091–4099

    Article  PubMed  Google Scholar 

  37. Warbey VS et al (2009) [18F]FDG PET/CT in the diagnosis of malignant peripheral nerve sheath tumours in neurofibromatosis type‑1. Eur J Nucl Med Mol Imaging 36(5):751–757

    Article  CAS  PubMed  Google Scholar 

  38. Mautner VF et al (2008) Assessment of benign tumor burden by whole-body MRI in patients with neurofibromatosis 1. Neuro Oncol 10(4):593–598

    Article  PubMed  PubMed Central  Google Scholar 

  39. Reinert CP et al (2019) Comprehensive anatomical and functional imaging in patients with type I neurofibromatosis using simultaneous FDG-PET/MRI. Eur J Nucl Med Mol Imaging 46(3):776–787

    Article  PubMed  Google Scholar 

  40. Wasa J et al (2010) MRI features in the differentiation of malignant peripheral nerve sheath tumors and neurofibromas. AJR Am J Roentgenol 194(6):1568–1574

    Article  PubMed  Google Scholar 

  41. Kratz CP et al (2017) Cancer screening recommendations for individuals with Li-Fraumeni syndrome. Clin Cancer Res 23(11):E38–E45

    Article  CAS  PubMed  Google Scholar 

  42. Bisdas S et al (2013) Metabolic mapping of gliomas using hybrid MR-PET imaging: feasibility of the method and spatial distribution of metabolic changes. Invest Radiol 48(5):295–301

    Article  CAS  PubMed  Google Scholar 

  43. Vaidyanathan S et al (2015) FDG PET/CT in infection and inflammation—current and emerging clinical applications. Clin Radiol 70(7):787–800

    Article  CAS  PubMed  Google Scholar 

  44. Chalian M et al (2011) MR enterography findings of inflammatory bowel disease in pediatric patients. AJR Am J Roentgenol 196(6):W810–W816

    Article  PubMed  Google Scholar 

  45. Narvaez JA et al (2010) MR imaging of early rheumatoid arthritis. Radiographics 30(1):143–163 (discussion 163–5)

    Article  PubMed  Google Scholar 

  46. Gok B et al (2013) The evaluation of FDG-PET imaging for epileptogenic focus localization in patients with MRI positive and MRI negative temporal lobe epilepsy. Neuroradiology 55(5):541–550

    Article  PubMed  Google Scholar 

  47. Rastogi S, Lee C, Salamon N (2008) Neuroimaging in pediatric epilepsy: a multimodality approach. Radiographics 28(4):1079–1095

    Article  PubMed  Google Scholar 

  48. Gatidis S et al (2016) Towards tracer dose reduction in PET studies: Simulation of dose reduction by retrospective randomized undersampling of list-mode data. Hell J Nucl Med. https://doi.org/10.1967/s002449910333

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Schäfer.

Ethics declarations

Interessenkonflikt

J.F. Schäfer, I. Tsiflikas, M. Esser, H. Dittmann, B. Bender und S. Gatidis geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

G. Staatz, Mainz

F. Zepp, Mainz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schäfer, J.F., Tsiflikas, I., Esser, M. et al. Kombinierte Positronenemissions-Magnetresonanztomographie (PET/MRT) bei Kindern und Jugendlichen. Monatsschr Kinderheilkd 168, 416–426 (2020). https://doi.org/10.1007/s00112-020-00889-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00112-020-00889-w

Schlüsselwörter

Keywords

Navigation