Skip to main content
Log in

The ins and outs of mitochondrial iron-loading: the metabolic defect in Friedreich’s ataxia

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Friedreich’s ataxia is a cardio- and neurodegenerative disease due to decreased expression of the mitochondrial protein, frataxin. This defect results in mitochondrial iron-overload, and in this review, we discuss the mechanisms that lead to this iron accumulation. Using a conditional knockout mouse model where frataxin is deleted in the heart, it has been shown that this mutation leads to transferrin receptor-1 upregulation, resulting in increased iron uptake from transferrin. There is also marked downregulation of ferritin that is required for iron storage and decreased expression of the iron exporter, ferroportin1, leading to decreased cellular iron efflux. The increased mitochondrial iron uptake is facilitated by upregulation of the mitochondrial iron transporter, mitoferrin2. This stimulation of iron uptake probably attempts to rescue the deficit in mitochondrial iron metabolism that is due to downregulation of mitochondrial iron utilization, namely, heme and iron–sulfur cluster (ISC) synthesis and also iron storage (mitochondrial ferritin). The resultant decrease in heme and ISC synthesis means heme and ISCs are not exiting the mitochondrion for cytosolic use. Hence, increased mitochondrial iron uptake coupled with decreased utilization and release leads to mitochondrial iron-loading. More generally, disturbance of mitochondrial iron utilization in other diseases probably also results in similar compensatory alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Becker E, Richardson DR (2001) Frataxin: its role in iron metabolism and the pathogenesis of Friedreich’s ataxia. Int J Biochem Cell Biol 33:1–10

    Article  CAS  PubMed  Google Scholar 

  2. Pandolfo M (2003) Friedreich ataxia. Semin Pediatr Neurol 10:163–172

    Article  PubMed  Google Scholar 

  3. Puccio H, Simon D, Cossee M, Criqui-Filipe P, Tiziano F, Melki J, Hindelang C, Matyas R, Rustin P, Koenig M (2001) Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat Genet 27:181–186

    Article  CAS  PubMed  Google Scholar 

  4. Richardson DR, Mouralian C, Ponka P, Becker E (2001) Development of potential iron chelators for the treatment of Friedreich’s ataxia: ligands that mobilize mitochondrial iron. Biochim Biophys Acta 1536:133–140

    CAS  PubMed  Google Scholar 

  5. Boddaert N, Le Quan Sang KH, Rotig A, Leroy-Willig A, Gallet S, Brunelle F, Sidi D, Thalabard JC, Munnich A, Cabantchik ZI (2007) Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood 110:401–408

    Article  CAS  PubMed  Google Scholar 

  6. Cooper JM, Schapira AH (2003) Friedreich’s ataxia: disease mechanisms, antioxidant and coenzyme Q10 therapy. BioFactors 18:163–171

    Article  CAS  PubMed  Google Scholar 

  7. Radisky DC, Babcock MC, Kaplan J (1999) The yeast frataxin homologue mediates mitochondrial iron efflux. Evidence for a mitochondrial iron cycle. J Biol Chem 274:4497–4499

    Article  CAS  PubMed  Google Scholar 

  8. Rotig A, de Lonlay P, Chretien D, Foury F, Koenig M, Sidi D, Munnich A, Rustin P (1997) Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat Genet 17:215–217

    Article  CAS  PubMed  Google Scholar 

  9. Adamec J, Rusnak F, Owen WG, Naylor S, Benson LM, Gacy AM, Isaya G (2000) Iron-dependent self-assembly of recombinant yeast frataxin: implications for Friedreich ataxia. Am J Hum Genet 67:549–562

    Article  CAS  PubMed  Google Scholar 

  10. Lodi R, Cooper JM, Bradley JL, Manners D, Styles P, Taylor DJ, Schapira AH (1999) Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. Proc Natl Acad Sci U S A 96:11492–11495

    Article  CAS  PubMed  Google Scholar 

  11. Santos MM, Ohshima K, Pandolfo M (2001) Frataxin deficiency enhances apoptosis in cells differentiating into neuroectoderm. Hum Mol Genet 10:1935–1944

    Article  CAS  PubMed  Google Scholar 

  12. Zhang DL, Hughes RM, Ollivierre-Wilson H, Ghosh MC, Rouault TA (2009) A ferroportin transcript that lacks an iron-responsive element enables duodenal and erythroid precursor cells to evade translational repression. Cell Metab 9:461–473

    Article  CAS  PubMed  Google Scholar 

  13. Dunn LL, Rahmanto YS, Richardson DR (2007) Iron uptake and metabolism in the new millennium. Trends Cell Biol 17:93–100

    Article  CAS  PubMed  Google Scholar 

  14. Napier I, Ponka P, Richardson DR (2005) Iron trafficking in the mitochondrion: novel pathways revealed by disease. Blood 105:1867–1874

    Article  CAS  PubMed  Google Scholar 

  15. Shaw GC, Cope JJ, Li L, Corson K, Hersey C, Ackermann GE, Gwynn B, Lambert AJ, Wingert RA, Traver D, Trede NS, Barut BA, Zhou Y, Minet E, Donovan A, Brownlie A, Balzan R, Weiss MJ, Peters LL, Kaplan J, Zon LI, Paw BH (2006) Mitoferrin is essential for erythroid iron assimilation. Nature 440:96–100

    Article  CAS  PubMed  Google Scholar 

  16. Le NT, Richardson DR (2002) Ferroportin1: a new iron export molecule? Int J Biochem Cell Biol 34:103–108

    Article  Google Scholar 

  17. Jonker JW, Buitelaar M, Wagenaar E, Van Der Valk MA, Scheffer GL, Scheper RJ, Plosch T, Kuipers F, Elferink RP, Rosing H, Beijnen JH, Schinkel AH (2002) The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci U S A 99:15649–15654

    Article  CAS  PubMed  Google Scholar 

  18. Shirihai OS, Gregory T, Yu C, Orkin SH, Weiss MJ (2000) ABC-me: a novel mitochondrial transporter induced by GATA-1 during erythroid differentiation. EMBO J 19:2492–2502

    Article  CAS  PubMed  Google Scholar 

  19. Quigley JG, Yang Z, Worthington MT, Phillips JD, Sabo KM, Sabath DE, Berg CL, Sassa S, Wood BL, Abkowitz JL (2004) Identification of a human heme exporter that is essential for erythropoiesis. Cell 118:757–766

    Article  CAS  PubMed  Google Scholar 

  20. Land T, Rouault TA (1998) Targeting of a human iron-sulfur cluster assembly enzyme, nifs, to different subcellular compartments is regulated through alternative AUG utilization. Mol Cell 2:807–815

    Article  CAS  PubMed  Google Scholar 

  21. Frazzon J, Dean DR (2003) Formation of iron-sulfur clusters in bacteria: an emerging field in bioinorganic chemistry. Curr Opin Chem Biol 7:166–173

    Article  CAS  PubMed  Google Scholar 

  22. Yoon T, Cowan JA (2003) Iron-sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for assembly of [2Fe-2S] clusters in ISU-type proteins. J Am Chem Soc 125:6078–6084

    Article  CAS  PubMed  Google Scholar 

  23. Park CH, Valore EV, Waring AJ, Ganz T (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 276:7806–7810

    Article  CAS  PubMed  Google Scholar 

  24. Nicolas G, Viatte L, Bennoun M, Beaumont C, Kahn A, Vaulont S (2002) Hepcidin, a new iron regulatory peptide. Blood Cells Mol Dis 29:327–335

    Article  CAS  PubMed  Google Scholar 

  25. Ganz T (2007) Molecular control of iron transport. J Am Soc Nephrol 18:394–400

    Article  CAS  PubMed  Google Scholar 

  26. Fleming RE, Sly WS (2001) Hepcidin: a putative iron-regulatory hormone relevant to hereditary hemochromatosis and the anemia of chronic disease. Proc Natl Acad Sci U S A 98:8160–8162

    Article  CAS  PubMed  Google Scholar 

  27. Babitt JL, Huang FW, Wrighting DM, Xia Y, Sidis Y, Samad TA, Campagna JA, Chung RT, Schneyer AL, Woolf CJ, Andrews NC, Lin HY (2006) Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet 38:531–539

    Article  CAS  PubMed  Google Scholar 

  28. Papanikolaou G, Samuels ME, Ludwig EH, MacDonald ML, Franchini PL, Dube MP, Andres L, MacFarlane J, Sakellaropoulos N, Politou M, Nemeth E, Thompson J, Risler JK, Zaborowska C, Babakaiff R, Radomski CC, Pape TD, Davidas O, Christakis J, Brissot P, Lockitch G, Ganz T, Hayden MR, Goldberg YP (2004) Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. Nat Genet 36:77–82

    Article  CAS  PubMed  Google Scholar 

  29. Nemeth E, Valore EV, Territo M, Schiller G, Lichtenstein A, Ganz T (2003) Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood 101:2461–2463

    Article  CAS  PubMed  Google Scholar 

  30. Febbraio MA, Pedersen BK (2005) Contraction-induced myokine production and release: is skeletal muscle an endocrine organ? Exerc Sport Sci Rev 33:114–119

    Article  PubMed  Google Scholar 

  31. Whitnall M, Rahmanto YS, Sutak R, Xu X, Becker EM, Mikhael MR, Ponka P, Richardson DR (2008) The MCK mouse heart model of Friedreich’s ataxia: alterations in iron-regulated proteins and cardiac hypertrophy are limited by iron chelation. Proc Natl Acad Sci U S A 105:9757–9762

    Article  CAS  PubMed  Google Scholar 

  32. Lymboussaki A, Pignatti E, Montosi G, Garuti C, Haile DJ, Pietrangelo A (2003) The role of the iron responsive element in the control of ferroportin1/IREG1/MTP1 gene expression. J Hepatol 39:710–715

    Article  CAS  PubMed  Google Scholar 

  33. Meyron-Holtz EG, Ghosh MC, Rouault TA (2004) Mammalian tissue oxygen levels modulate iron-regulatory protein activities in vivo. Science 306:2087–2090

    Article  CAS  PubMed  Google Scholar 

  34. Seznec H, Simon D, Bouton C, Reutenauer L, Hertzog A, Golik P, Procaccio V, Patel M, Drapier JC, Koenig M, Puccio H (2005) Friedreich ataxia: the oxidative stress paradox. Hum Mol Genet 14:463–474

    Article  CAS  PubMed  Google Scholar 

  35. Meyron-Holtz EG, Ghosh MC, Iwai K, LaVaute T, Brazzolotto X, Berger UV, Land W, Ollivierre-Wilson H, Grinberg A, Love P, Rouault TA (2004) Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J 23:386–395

    Article  CAS  PubMed  Google Scholar 

  36. Levi S, Arosio P (2004) Mitochondrial ferritin. Int J Biochem Cell Biol 36:1887–1889

    Article  CAS  PubMed  Google Scholar 

  37. Li K, Besse EK, Ha D, Kovtunovych G, Rouault TA (2008) Iron-dependent regulation of frataxin expression: implications for treatment of Friedreich ataxia. Hum Mol Genet 17:2265–2273

    Article  CAS  PubMed  Google Scholar 

  38. Huang ML-H, Becker EM, Whitnall M, Rahmanto YS, Ponka P, Richardson DR (2009) Elucidation of the mechanism of mitochondrial iron loading in Friedreich’s ataxia by analysis of a mouse mutant. Proc Natl Acad Sci U S A 106:16381–16386

    Article  PubMed  Google Scholar 

  39. Lim JE, Jin O, Bennett C, Morgan K, Wang F, Trenor CC 3rd, Fleming MD, Andrews NC (2005) A mutation in Sec15l1 causes anemia in hemoglobin deficit (hbd) mice. Nat Genet 37:1270–1273

    Article  CAS  PubMed  Google Scholar 

  40. Zhang AS, Sheftel AD, Ponka P (2006) The anemia of “haemoglobin-deficit” (hbd/hbd) mice is caused by a defect in transferrin cycling. Exp Hematol 34:593–598

    Article  CAS  PubMed  Google Scholar 

  41. Schoenfeld RA, Napoli E, Wong A, Zhan S, Reutenauer L, Morin D, Buckpitt AR, Taroni F, Lonnerdal B, Ristow M, Puccio H, Cortopassi GA (2005) Frataxin deficiency alters heme pathway transcripts and decreases mitochondrial heme metabolites in mammalian cells. Hum Mol Genet 14:3787–3799

    Article  CAS  PubMed  Google Scholar 

  42. Ponka P, Wilczynska A, Schulman HM (1982) Iron utilization in rabbit reticulocytes. A study using succinylacetone as an inhibitor or heme synthesis. Biochim Biophys Acta 720:96–105

    Article  CAS  PubMed  Google Scholar 

  43. Adams ML, Ostapiuk I, Grasso JA (1989) The effects of inhibition of heme synthesis on the intracellular localization of iron in rat reticulocytes. Biochim Biophys Acta 1012:243–253

    Article  CAS  PubMed  Google Scholar 

  44. Mochel F, Knight MA, Tong WH, Hernandez D, Ayyad K, Taivassalo T, Andersen PM, Singleton A, Rouault TA, Fischbeck KH, Haller RG (2008) Splice mutation in the iron-sulfur cluster scaffold protein ISCU causes myopathy with exercise intolerance. Am J Hum Genet 82:652–660

    Article  CAS  PubMed  Google Scholar 

  45. Wingert RA, Galloway JL, Barut B, Foott H, Fraenkel P, Axe JL, Weber GJ, Dooley K, Davidson AJ, Schmid B, Paw BH, Shaw GC, Kingsley P, Palis J, Schubert H, Chen O, Kaplan J, Zon LI (2005) Deficiency of glutaredoxin 5 reveals Fe-S clusters are required for vertebrate haem synthesis. Nature 436:1035–1039

    Article  CAS  PubMed  Google Scholar 

  46. Camaschella C, Campanella A, De Falco L, Boschetto L, Merlini R, Silvestri L, Levi S, Iolascon A (2007) The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload. Blood 110:1353–1358

    Article  CAS  PubMed  Google Scholar 

  47. Miao R, Kim H, Koppolu UM, Ellis EA, Scott RA, Lindahl PA (2009) Biophysical characterization of the iron in mitochondria from Atm1p-depleted Saccharomyces cerevisiae. Biochemistry 48:9556–9568

    Article  CAS  PubMed  Google Scholar 

  48. De Domenico I, Ward DM, Langelier C, Vaughn MB, Nemeth E, Sundquist WI, Ganz T, Musci G, Kaplan J (2007) The molecular mechanism of hepcidin-mediated ferroportin down-regulation. Mol Biol Cell 18:2569–2578

    Article  PubMed  Google Scholar 

  49. Kakhlon O, Manning H, Breuer W, Melamed-Book N, Lu C, Cortopassi G, Munnich A, Cabantchik ZI (2008) Cell functions impaired by frataxin deficiency are restored by drug-mediated iron relocation. Blood 112:5219–5227

    Article  CAS  PubMed  Google Scholar 

  50. Lu Z, Nie G, Li Y, Soe-Lin S, Tao Y, Cao Y, Zhang Z, Liu N, Ponka P, Zhao B (2009) Over-expression of mitochondrial ferritin sensitizes cells to oxidative stress via an iron-mediated mechanism. Antioxid Redox Signal 11:1791–1803

    Google Scholar 

Download references

Acknowledgments

Work from the author's laboratory reported in this publication was supported by grants to D.R.R. including a Senior Principal Research Fellowship and Project Grant from the National Health and Medical Research Council of Australia; grants from the Muscular Dystrophy Association USA and NSW and Friedreich’s Ataxia Research Alliance Australia. M.L-H.H. and M.W. were supported by Ph.D Scholarships from the Friedreich’s Ataxia Research Alliance USA and University of Sydney (Australian Post-graduate Award), respectively. Y.S.R was supported by a Cancer Institute New South Wales Early Career Development Fellowship. P.P. thanks the Canadian Institutes of Health Research for a research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Des R. Richardson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richardson, D.R., Huang, M.LH., Whitnall, M. et al. The ins and outs of mitochondrial iron-loading: the metabolic defect in Friedreich’s ataxia. J Mol Med 88, 323–329 (2010). https://doi.org/10.1007/s00109-009-0565-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-009-0565-x

Keywords

Navigation