Skip to main content
Log in

Non-destructive grading of green Maritime pine using the vibration method

Sortierung von frischem Küstenkiefernholz mittels zerstörungsfreier Schwingungsmessung

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

The purpose of this study is to estimate the modulus of elasticity of green lumber with unknown moisture content (MC) by non-destructive measurement. This paper reports the results and statistical analysis of a large number of experiments. They indicate that the dynamic modulus of elasticity (DMOE) can be determined without knowing the MC. Mechanical grading with DMOE determined in this way is reliable and efficient with a correlation coefficient of 0.44, compared with a coefficient of 0.45 between MOR and DMOE of dry specimens. Thus the possibility of strength grading of Maritime pine (Pinus pinaster) at an early step in the industrial process is demonstrated with success.

Zusammenfassung

Ziel dieser Studie war es, den Elastizitätsmodul von frischem Schnittholz mit unbekannter Holzfeuchte (MC) mittels zerstörungsfreier Messung zu bestimmen. In diesem Artikel werden die Ergebnisse sowie die statische Analyse einer großen Anzahl von Versuchen beschrieben. Sie zeigen, dass der dynamische Elastizitätsmodul (DMOE) bestimmt werden kann, auch wenn die Holzfeuchte nicht bekannt ist. Eine mechanische Sortierung mit dem so bestimmten DMOE erwies sich mit einem Korrelationskoeffizienten von 0,44 als zuverlässig und effizient im Vergleich zu einem Korrelationskoeffizienten von 0,45 zwischen Biegefestigkeit (MOR) und DMOE von trockenen Prüfkörpern. Damit wurde gezeigt, dass die Festigkeitssortierung von Küstenkiefernholz (Pinus pinaster) bereits in einer frühen Phase des Herstellprozesses möglich ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5
Fig. 6 Abb. 6
Fig. 7 Abb. 7

Similar content being viewed by others

References

  • Cariou JL (1987) Characterization of an anisotropic viscoelastic material: the wood (in French). Ph.D. Thesis, University Bordeaux1, France

  • Casagrande S. (1998) Nondestructive evaluation by vibrational analysis of the mechanical performance of engineered wood products (in French). Ph. D. Thesis, University Bordeaux1, France

  • Dinwoodie JM (2000) Timber its nature and behaviour. Taylor & Francis, Abingdon

    Book  Google Scholar 

  • Dumail JF, Morlier P (2004) New methods of non-destructive grading of Maritime pine wood in sawmills products (in French). Xyloméca EURL

  • European Standard EN 13183-1 (2002) Moisture content of a piece of sawn timber—Part 1: Determination by oven dry method

  • European Standard EN 14081-4 (2005) Timber structures—Strength graded structural timber with rectangular cross section - Part 4: Machine Grading—Grading machine settings for machine controlled systems

  • European Standard EN 1995-1-1 (2004) Eurocode 5: Design of timber structures—Part 1-1: General—Common rules and rules for buildings

  • European Standard EN 408 (1995) Timber structures—solid timber and glued laminated timber—determination of some physical and mechanical properties for structural purposes

  • Green W, Gorman TM, Evans JW, Murphy JF (2004) Improved grading system for structural logs for log homes. Forest Prod J54:52–62

    Google Scholar 

  • Guitard D (1987) Mechanics of wood and wood composites (in French). Nabla Collection

  • Ilic J (2001) Variation of the dynamic elastic modulus and wave velocity in the fibre direction with other properties during the drying of Eucalyptus. Wood Sci Technol 35:157–166

    Article  CAS  Google Scholar 

  • Ilic J (2003) Dynamic MOE of 55 species using small wood beams. Holz Roh Werkst 61:167–172

    Google Scholar 

  • Jiang JH, Lv JX, Ren HQ, Luo XQ, Chao L, Guo W (2008) Evaluation of modulus of elasticity for dimension lumber by three nondestructive techniques. J Zhejiang For Coll 25:277–281

    Google Scholar 

  • Köhler J (2007) Modelling the property of strength graded timber material. Final conference of COST E 53. Quality control for wood and wood products

  • Larsson S, Ohlsson L (1998) Dynamic test as a tool for timber strength grading. International conference of IUFRO S5.02 Timber Engineering, Denmark

  • Moslemi AA (1967) Dynamic viscoelasticity in hardboard. For Prod J 17:25–33

    Google Scholar 

  • Murphy JF (2011) Transverse vibrations of wood-based products: equations and considerations. Research Note FPL-RN-0324. Madison, WI: US Department of Agriculture, Forest Service, Forest Products Laboratory

  • Navi P, Sandberg D (2012) Thermo-Hydro-Mechanical Processing of Wood. EPFL Press, Switzerland

  • Pommier R, Elbez G (2006) Finger jointing green softwood—evaluation of the interaction between PUR adhesive and wood. J Wood Mater Sci Eng 1:127–137

    Article  Google Scholar 

  • Renaudin Ph, Breysse D (1999) Anatomical parameters and fracture behavior of spruce in standard dimensions (in French). Mater Struct 32:311–318

    Article  Google Scholar 

  • Ross RJ, Pellerin RF (1991) Stress wave evaluation of green material: preliminary results using dimension lumber. For Prod J 41:57–59

    Google Scholar 

  • Ross RJ, Pellerin RF (1994) Nondestructive testing for assessing wood members in structures: a review. USDA Forest service Forest Products Laboratory, General tech. rep. FPL-GTR-70

  • Ross RJ, Geske EA, Larson GL, Murphy JF (1991) Transverse vibration non-destructive testing using a personal computer, Research Paper, FPL-RP-502, Forest Products Laboratory, Forest Service, US Department of Agriculture

  • Ross RJ, Bradshaw BK, Pellerin RF (1998) Nondestructive evaluation of wood. For Prod J 48:14–19

    Google Scholar 

  • Timoshenko S, Young DH, Weaver W (1974) Vibration problems in engineering. Fourth Edition. Wiley, London

  • Tsoumis G (1991) Science and Technology of Wood: Structure, Properties, Utilization. Van Nostrand Reinhold, New York

  • Unterwieser H, Schickhofer G (2011) Influence of moisture content of wood on sound velocity and dynamic MOE of natural frequency- and ultrasonic runtime measurement. Eur J Wood Prod 69:171–181

    Article  Google Scholar 

  • Wang SY, Chen JH, Tsai MJ, Lin CJ, Yang TH (2008) Grading of softwood lumber using non-destructive techniques. J Mater Process Technol 208:149–158

    Article  Google Scholar 

  • Wessels CB, Malan FS, Rypstra T (2011) A review of measurement methods used on standing trees for the prediction of some mechanical properties of timber. Eur J Forest Res 130:881–893

    Article  Google Scholar 

  • Wood Handbook (2010) Wood as an engineering material. US Forest Service

  • Yang X, Luo J (2011) Study on the correlation between mechanical characteristics and non-destructive testing of stress wave in poplar logs. Conference ICEES 2011, Singapore

  • Yang HT, Wang SY, Lin CJ, Tsai MJ (2008) Evaluation of the mechanical properties of Douglas-fir and Japanese cedar lumber and its structural glulam by non-destructive techniques. Constr Build Mater 22:487–493

    Article  Google Scholar 

  • Yin YF, Lv JX, Ni C, Ren HQ (2005) Evaluation on bending, tensile and compressive strength of structural lumber with transverse vibration technique. J Beijing For Univ 27:107–110

    Google Scholar 

  • Zhang XY, Yin YF, Luo B, Jiang XM (2010) Predicting bending performance of larch dimensional lumber by an ultrasonic technique. China Wood Ind 24:1–3

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the National Research Programme ABOVE for the financial support. Thanks to Professor Lech MUSZYNSKI for his advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Régis Pommier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pommier, R., Breysse, D. & Dumail, JF. Non-destructive grading of green Maritime pine using the vibration method. Eur. J. Wood Prod. 71, 663–673 (2013). https://doi.org/10.1007/s00107-013-0727-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-013-0727-y

Keywords

Navigation