Skip to main content
Log in

Short geodesic loops and \(L^p\) norms of eigenfunctions on large genus random surfaces

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We give upper bounds for \(L^p\) norms of eigenfunctions of the Laplacian on compact hyperbolic surfaces in terms of a parameter depending on the growth rate of the number of short geodesic loops passing through a point. When the genus \(g \rightarrow +\infty \), we show that random hyperbolic surfaces X with respect to the Weil-Petersson volume have with high probability at most one such loop of length less than \(c \log g\) for small enough \(c > 0\). This allows us to deduce that the \(L^p\) norms of \(L^2\) normalised eigenfunctions on X are \(O(1/\sqrt{\log g})\) with high probability in the large genus limit for any \(p > 2 + \varepsilon \) for \(\varepsilon > 0\) depending on the spectral gap \(\lambda _1(X)\) of X, with an implied constant depending on the eigenvalue and the injectivity radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Note that by the Gauss-Bonnet theorem the genus g and the volume of a compact hyperbolic surface |X| are related by the formula \(|X| = 2\pi (2g-2),\) and are therefore equivalent parameters in this context.

References

  1. M. Abert, N. Bergeron, I. Biringer, T. Gelander, N. Nikolov, J. Raimbault, and I. Samet. On the growth of \(L^2\)-invariants for sequences of lattices in Lie groups. Ann. of Math. (2), 185(3):711–790, 2017.

  2. N. Anantharaman and E. Le Masson. Quantum ergodicity on large regular graphs. Duke Math. J., 164(4):723–765, 2015.

    Article  MathSciNet  Google Scholar 

  3. T. Aougab and S. Huang. Minimally intersecting filling pairs on surfaces. Algebr. Geom. Topol., 15(2):903–932, 2015.

    Article  MathSciNet  Google Scholar 

  4. A. Backhausz and B. Szegedy. On the almost eigenvectors of random regular graphs. Ann. Probab., 47(3):1677–1725, 2019.

    Article  MathSciNet  Google Scholar 

  5. R. Bauerschmidt, J. Huang, and H.-T. Yau. Local Kesten-McKay law for random regular graphs. Comm. Math. Phys., 369(2):523–636, 2019.

    Article  MathSciNet  Google Scholar 

  6. P. H. Bérard. On the wave equation on a compact Riemannian manifold without conjugate points. Math. Z., 155(3):249–276, 1977.

    Article  MathSciNet  Google Scholar 

  7. N. Bergeron. The spectrum of hyperbolic surfaces. Universitext. Springer, Cham; EDP Sciences, Les Ulis, 2016.

  8. V. Blomer and R. Holowinsky. Bounding sup-norms of cusp forms of large level. Invent. Math., 179(3):645–681, 2010.

    Article  MathSciNet  Google Scholar 

  9. C. Bordenave. A new proof of Friedman’s second eigenvalue Theorem and its extension to random lifts. Ann. Sci. Éc. Norm. Supér. (4), to appear, 2015. arXiv:1502.04482.

  10. R. Brooks and E. Makover. Random construction of Riemann surfaces. J. Differential Geom., 68(1):121–157, 2004.

    Article  MathSciNet  Google Scholar 

  11. S. Brooks and E. Le Masson. \(L^p\) norms of eigenfunctions on regular graphs and on the sphere. Int. Math. Res. Not. IMRN, 2020(11):3201–3228, 2020.

    Article  Google Scholar 

  12. S. Brooks, E. Le Masson, and E. Lindenstrauss. Quantum ergodicity and averaging operators on the sphere. Int. Math. Res. Not. IMRN, (19):6034–6064, 2015.

    MathSciNet  MATH  Google Scholar 

  13. S. Brooks and E. Lindenstrauss. Joint quasimodes, positive entropy, and quantum unique ergodicity. Invent. Math., 198(1):219–259, 2014.

    Article  MathSciNet  Google Scholar 

  14. P. Buser. Geometry and spectra of compact Riemann surfaces. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA, 2010. Reprint of the 1992 edition.

  15. Y. Colin de Verdière. Ergodicité et fonctions propres du laplacien. Comm. Math. Phys., 102(3):497–502, 1985.

    Article  MathSciNet  Google Scholar 

  16. D. L. de George and N. R. Wallach. Limit formulas for multiplicities in \(L^{2}(\Gamma \backslash G)\). Ann. of Math. (2), 107(1):133–150, 1978.

  17. D. L. DeGeorge and N. R. Wallach. Limit formulas for multiplicities in \(L^{2}(\Gamma \backslash G)\). II. The tempered spectrum. Ann. of Math. (2), 109(3):477–495, 1979.

  18. H. Donnelly. Bounds for eigenfunctions of the Laplacian on compact Riemannian manifolds. J. Funct. Anal., 187(1):247–261, 2001.

    Article  MathSciNet  Google Scholar 

  19. B. Farb and D. Margalit. A primer on mapping class groups (pms-49). Princeton University Press, 2011.

  20. W. M. Goldman. The symplectic nature of fundamental groups of surfaces. Adv. in Math., 54(2):200–225, 1984.

    Article  MathSciNet  Google Scholar 

  21. G. Harcos and N. Templier. On the sup-norm of Maass cusp forms of large level. III. Math. Ann., 356(1):209–216, 2013.

    Article  MathSciNet  Google Scholar 

  22. A. Hassell. Ergodic billiards that are not quantum unique ergodic. Ann. of Math. (2), 171(1):605–619, 2010.

  23. A. Hassell and M. Tacy. Improvement of eigenfunction estimates on manifolds of nonpositive curvature. Forum Math., 27(3):1435–1451, 2015.

    Article  MathSciNet  Google Scholar 

  24. Y. Hu and A. Saha. Sup-norms of eigenfunctions in the level aspect for compact arithmetic surfaces, II: newforms and subconvexity. Compos. Math., to appear, 2019. arXiv:1905.06295.

  25. Y. Imayoshi and M. Taniguchi. An introduction to Teichmüller spaces. Springer-Verlag, Tokyo, 1992.

    Book  Google Scholar 

  26. H. Iwaniec. Spectral methods of automorphic forms, volume 53 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI; Revista Matemática Iberoamericana, Madrid, second edition, 2002.

  27. H. Iwaniec and P. Sarnak. \(L^\infty \) norms of eigenfunctions of arithmetic surfaces. Ann. of Math. (2), 141(2):301–320, 1995.

  28. S. Katok. Fuchsian groups. University of Chicago Press, Chicago, IL, 1992.

    MATH  Google Scholar 

  29. E. Le Masson and T. Sahlsten. Quantum ergodicity and Benjamini-Schramm convergence of hyperbolic surfaces. Duke Math. J., 166(18):3425–3460, 2017.

    Article  MathSciNet  Google Scholar 

  30. E. Lindenstrauss. Invariant measures and arithmetic quantum unique ergodicity. Ann. of Math. (2), 163(1):165–219, 2006.

  31. M. Magee and F. Naud. Explicit spectral gaps for random covers of Riemann surfaces. Publ. Math. Inst. Hautes Études Sci., 132:137–179, 2020.

    Article  MathSciNet  Google Scholar 

  32. J. Marklof. Selberg’s trace formula: an introduction. In Hyperbolic geometry and applications in quantum chaos and cosmology, volume 397 of London Math. Soc. Lecture Note Ser., pages 83–119. Cambridge Univ. Press, Cambridge, 2012.

  33. M. Mirzakhani. Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces. Invent. Math., 167(1):179–222, 2007.

    Article  MathSciNet  Google Scholar 

  34. M. Mirzakhani. Weil-Petersson volumes and intersection theory on the moduli space of curves. J. Amer. Math. Soc., 20(1):1–23, 2007.

    Article  MathSciNet  Google Scholar 

  35. M. Mirzakhani. Growth of Weil-Petersson volumes and random hyperbolic surfaces of large genus. J. Differential Geom., 94(2):267–300, 2013.

    Article  MathSciNet  Google Scholar 

  36. M. Mirzakhani and B. Petri. Lengths of closed geodesics on random surfaces of large genus. Comment. Math. Helv., 94(4):869–889, 2019.

    Article  MathSciNet  Google Scholar 

  37. M. Mirzakhani and P. Zograf. Towards large genus asymptotics of intersection numbers on moduli spaces of curves. Geom. Funct. Anal., 25(4):1258–1289, 2015.

    Article  MathSciNet  Google Scholar 

  38. Z. Rudnick and P. Sarnak. The behaviour of eigenstates of arithmetic hyperbolic manifolds. Comm. Math. Phys., 161(1):195–213, 1994.

    Article  MathSciNet  Google Scholar 

  39. A. Saha. Hybrid sup-norm bounds for Maass newforms of powerful level. Algebra Number Theory, 11(5):1009–1045, 2017.

    Article  MathSciNet  Google Scholar 

  40. A. Saha. Sup-norms of eigenfunctions in the level aspect for compact arithmetic surfaces. Math. Ann., 376(1-2):609–644, 2020.

    Article  MathSciNet  Google Scholar 

  41. P. Sarnak and X. X. Xue. Bounds for multiplicities of automorphic representations. Duke Math. J., 64(1):207–227, 1991.

    Article  MathSciNet  Google Scholar 

  42. C. D. Sogge. Concerning the \(L^p\) norm of spectral clusters for second-order elliptic operators on compact manifolds. J. Funct. Anal., 77(1):123–138, 1988.

    Article  MathSciNet  Google Scholar 

  43. N. Templier. Hybrid sup-norm bounds for Hecke-Maass cusp forms. J. Eur. Math. Soc. (JEMS), 17(8):2069–2082, 2015.

    Article  MathSciNet  Google Scholar 

  44. A. I. Šnirel\(^{\prime }\) man. Ergodic properties of eigenfunctions. Uspehi Mat. Nauk, 29(6(180)):181–182, 1974.

  45. A. Wright. A tour through Mirzakhani’s work on moduli spaces of Riemann surfaces. Bull. Amer. Math. Soc. (N.S.), 57(3):359–408, 2020.

  46. S. Zelditch. Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J., 55(4):919–941, 1987.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Bram Petri for patiently explaining to us the details of [MP19] and sharing his ideas on the proof of Theorem 1.3. We are grateful to Ara Basmajian, Mikolaj Fraczyk, Ilmari Kangasniemi, Vadim Kulikov, Michael Magee, Laura Monk, Mark Pollicott, Peter Sarnak, Alex Wright and Peter Zograf for many helpful discussions and comments. Finally we thank the anonymous referee for numerous comments that led to an improvement of the presentation and the proof.

Author information

Authors and Affiliations

Authors

Contributions

The project was conceptualised by E. Le Masson and joined in Summer 2018 by T. Sahlsten, C. Gilmore and J. Thomas. C. Gilmore contributed to discussions on the spectral theory side in Autumn 2018 and then the other three authors, with a significant contribution of J. Thomas, completed the work towards finishing the spectral theory side and adding the random surface component during Summer and Autumn 2019.

Corresponding author

Correspondence to Etienne Le Masson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

C. Gilmore was supported by the Magnus Ehrnrooth Foundation and the Irish Research Council via a Government of Ireland Postdoctoral Fellowship. E. Le Masson was supported by Initiative d’Excellence Paris-Seine.

T. Sahlsten was supported by a start-up grant from MIMS, University of Manchester. J. Thomas was supported by the Dean’s Award from the University of Manchester.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilmore, C., Le Masson, E., Sahlsten, T. et al. Short geodesic loops and \(L^p\) norms of eigenfunctions on large genus random surfaces. Geom. Funct. Anal. 31, 62–110 (2021). https://doi.org/10.1007/s00039-021-00556-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-021-00556-6

Keywords

Mathematics Subject Classification

Navigation