Skip to main content
Log in

A Simple Schmitt Trigger Circuit with Grounded Passive Elements and Its Application to Square/Triangular Wave Generator

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper introduces a new simple Schmitt trigger circuit using a plus-type differential voltage-current conveyor (DVCC+) and only two grounded resistors. The proposed circuit is very simple and enjoys adjustable lower and higher threshold voltages as well as the output saturation levels. The application of the proposed Schmitt trigger circuit to the square/triangular wave generator is also given. Moreover, a current feedback operational amplifier (CFOA)-based square/triangular wave generator is derived from the proposed DVCC+-based circuit. Simulation and experimental results are presented to exhibit the performance of the proposed circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.T. Abuelma’atti, M.A. Al-Absi, A low-cost dual/slope triangular/square wave generator. Int. J. Electron. 91(3), 185–190 (2004)

    Article  Google Scholar 

  2. M.T. Abuelma’atti, M.A. Al-Absi, A current conveyor-based relaxation oscillator as a versatile electronic interface for capacitive and resistive sensors. Int. J. Electron. 92(8), 473–477 (2005)

    Article  Google Scholar 

  3. M.T. Abuelma’atti, S.M. Al-Shahrani, New CFOA-based triangular/square wave generator. Int. J. Electron. 84(6), 583–588 (1998)

    Article  Google Scholar 

  4. B. Almashary, H. Alhokail, Current-mode triangular wave generator using CCIIs. Microelectron. J. 31, 239–243 (2000)

    Article  Google Scholar 

  5. E. Bruun, Feedback analysis of transimpedance operational amplifier circuits. IEEE Trans. Circuits Syst., Part I 40(4), 275–277 (1993)

    Article  Google Scholar 

  6. H.-C. Chien, Y.-K. Lo, Design and implementation of monostable multivibrators employing differential voltage current conveyors. Microelectron. J. 42(10), 1107–1115 (2011)

    Article  Google Scholar 

  7. W.-S. Chung, H. Kim, H.-W. Cha, H.-J. Kim, Triangular/squarewave generator with independently controllable frequency and amplitude. IEEE Trans. Instrum. Meas. 54(1), 105–109 (2005)

    Article  Google Scholar 

  8. O. Cicekoglu, H. Kuntman, On the design of CCII+ based relaxation oscillator employing single passive element for linear period control. Microelectron. J. 29, 983–989 (1998)

    Article  Google Scholar 

  9. G. Di Cataldo, G. Palumbo, S. Pennisi, A Schmitt trigger by means of a CCII+. Int. J. Circuit Theory Appl. 23(2), 161–165 (1995)

    Article  Google Scholar 

  10. H.O. Elwan, A.M. Soliman, Novel CMOS differential voltage current conveyor and its applications. IEE Proc., Circuits Devices Syst. 144(3), 195–200 (1997)

    Article  Google Scholar 

  11. S. Franco, Analytical foundation of current-feedback amplifiers, in Proc. IEEE ISCAS’93, San Francisco (1993), pp. 1050–1053

    Google Scholar 

  12. A.A. Khan, S. Bimal, K.K. Dey, S.S. Roy, Novel RC sinusoidal oscillator using second-generation current conveyor. IEEE Trans. Instrum. Meas. 54(6), 2402–2406 (2005)

    Article  Google Scholar 

  13. V. Kumar, A.U. Keskin, K. Pal, DVCC-based single element controlled oscillators using all-grounded components and simultaneous current-voltage mode outputs. Frequenz 61(3), 141–144 (2007)

    Article  Google Scholar 

  14. Y. Liu, S. Chen, K. Nakayama, K. Watanabe, Limitations of a relaxation oscillator in capacitance measurements. IEEE Trans. Instrum. Meas. 49(5), 980–983 (2000)

    Article  Google Scholar 

  15. Y.-K. Lo, H.-C. Chien, Switch-Controllable OTRA-based square/Triangular waveform generator. IEEE Trans. Circuits Syst. II, Express Briefs 54(12), 1110–1114 (2007)

    Article  Google Scholar 

  16. Y.-K. Lo, H.-C. Chien, H.-J. Chiu, Current-input OTRA Schmitt trigger with dual hystersis modes. Int. J. Circuit Theory Appl. 38, 739–746 (2010)

    Article  MATH  Google Scholar 

  17. Y.-K. Lo, H.-C. Chien, H.-J. Chiu, Switch-controllable OTRA-based bistable multivibrators. IET Circuits Devices Syst. 2(4), 373–382 (2008)

    Article  Google Scholar 

  18. S. Minaei, A new high performance CMOS third generation current conveyor (CCIII) and its application. Electr. Eng. J. 85(3), 147–153 (2003)

    Article  Google Scholar 

  19. S. Minaei, E. Yuce, All-grounded passive elements voltage-mode DVCC-based universal filters. Circuits Syst. Signal Process. 29(2), 295–309 (2010)

    Article  MATH  Google Scholar 

  20. S. Minaei, E. Yuce, Novel voltage-mode all-pass filter based on using DVCCs. Circuits Syst. Signal Process. 29(3), 391–402 (2010)

    Article  MATH  Google Scholar 

  21. S.N. Nihtianov, G.P. Shterev, B. Iliev, G.C.M. Meijer, An interface circuit for R-C impedance sensors with a relaxation oscillator. IEEE Trans. Instrum. Meas. 50(6), 1563–1567 (2001)

    Article  Google Scholar 

  22. OPA660. Wide Bandwidth Operational Transconductance amplifier and Buffer. Datasheet. Burr-Brown

  23. D. Pal, A. Srinivasulu, B.B. Pal, A. Demosthenous, B.N. Das, Current conveyor-based square/triangular wave generators with improved linearity. IEEE Trans. Instrum. Meas. 58(7), 2174–2180 (2009)

    Article  Google Scholar 

  24. G. Palumbo, S. Pennisi, Current-feedback versus voltage operational amplifiers. IEEE Trans. Circuits Syst., Part I 48(5), 617–623 (2001)

    Article  Google Scholar 

  25. A.S. Sedra, K.C. Smith, Microelectronic Circuits, 5th edn. (Oxford Univ. Press, London, UK, 2004), pp. 1185–1188

    Google Scholar 

  26. A.S. Sedra, G.W. Roberts, F. Gohn, The current conveyor: History, progress and new results. IEE. Proc. Part G, Circuits Devices Syst. 137, 78–87 (1990)

    Article  Google Scholar 

  27. P. Silapan, M. Siripruchyanun, Fully and electronically controllable current-mode Schmitt triggers employing only single MO-CCCDTA and their applications. Analog Integr. Circuits Signal Process. 68, 111–128 (2011)

    Article  Google Scholar 

  28. D. Smith, M. Koen, A. Witulski, Evolution of high-speed operational amplifier architectures. IEEE J. Solid-State Circuits 29(10), 1166–1179 (1994)

    Article  Google Scholar 

  29. A. Srinivasulu, A novel current conveyor-based Schmitt trigger and its application as a relaxation oscillator. Int. J. Circuit Theory Appl. 39(6), 679–686 (2011)

    Article  Google Scholar 

  30. C. Toumazou, F.J. Lidgey, D.G. Haigh, Analog IC Design: The Current-Mode Approach (Peter Peregrinus, London, 1990)

    Google Scholar 

  31. F. Yuan, Differential CMOS Schmitt trigger with tunable hysteresis. Analog Integr. Circuits Signal Process. 62, 245–248 (2010)

    Article  Google Scholar 

  32. E. Yuce, Grounded inductor simulators with improved low frequency performances. IEEE Trans. Instrum. Meas. 57(5), 1079–1084 (2008)

    Article  Google Scholar 

  33. E. Yuce, S. Minaei, O. Cicekoglu, Full-wave rectifier realization using only two CCII+s and NMOS transistors. Int. J. Electron. 93(8), 533–541 (2006)

    Article  Google Scholar 

  34. E. Yuce, S. Minaei, H. Alpaslan, Novel CMOS technology-based linear grounded voltage controlled resistor. J. Circuits Syst. Comput. 20(3), 447–455 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Minaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minaei, S., Yuce, E. A Simple Schmitt Trigger Circuit with Grounded Passive Elements and Its Application to Square/Triangular Wave Generator. Circuits Syst Signal Process 31, 877–888 (2012). https://doi.org/10.1007/s00034-011-9373-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-011-9373-y

Keywords

Navigation