Skip to main content
Log in

An explicit solution for the dynamics of a taut string of finite length carrying a traveling mass: the subsonic case

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The authors investigate the linear vibrations induced in an elastic string by a loading point-like mass constrained to moving on it with constant horizontal velocity. Exact solutions are shown in the case of subsonic regime. The displacement is explicitly provided in terms of a power series determined by iteration, which is shown to converge to the solution of the problem. The presence of a discontinuity in the right extremum of the considered space interval is also shown both analytically and numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Akin J.E., Mofid M.: Numerical solution for response of beams with moving mass. J. Struct. Eng. 115(1), 120–131 (1989)

    Article  Google Scholar 

  2. Altenbach H., Eremeyev V.A.: On the linear theory of micropolar plates. ZAMM J. Appl. Math. Mech. 89(4), 242–256 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aminpour H., Rizzi N.: A one-dimensional continuum with microstructure for single-wall carbon nanotubes bifurcation analysis. Math. Mech. Solids 21(2), 168–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andreaus Ugo, Baragatti Paolo, Placidi L.: Experimental and numerical investigations of the responses of a cantilever beam possibly contacting a deformable and dissipative obstacle under harmonic excitation. Int. J. Non-linear Mech. 80, 96–106 (2016)

    Article  Google Scholar 

  5. Andreaus Ugo, Chiaia Bernardino, Placidi L.: Soft-impact dynamics of deformable bodies. Contin. Mech. Thermodyn. 25, 375–398 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aristodemo M., Turco E.: Boundary element discretization of plane elasticity and plate bending problems. Int. J. Numer. Methods Eng. 37(6), 965–987 (1994)

    Article  MATH  Google Scholar 

  7. Auffray N., dell’Isola F., Eremeyev V.A., Madeo A., Rosi G.: Analytical continuum mechanics à la Hamilton-Piola least action principle for second gradient continua and capillary fluids. Math. Mech. Solids 20(4), 375–417 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bilello C., Bergman L.A., Kuchma D.: Experimental investigation of a small-scale bridge model under a moving mass. J. Struct. Eng. 130(5), 799–804 (2004)

    Article  Google Scholar 

  9. Bilotta A., Formica G., Turco E.: Performance of a high-continuity finite element in three-dimensional elasticity. Int. J. Numer. Methods Biomed. Eng. 26(9), 1155–1175 (2010)

    Article  MATH  Google Scholar 

  10. Carcaterra A., dell’Isola F., Esposito R., Pulvirenti M.: Macroscopic description of microscopically strongly inhomogenous systems: A mathematical basis for the synthesis of higher gradients metamaterials. Arch. Ration. Mech. Anal. 218(3), 1239–1262 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cazzani, A., Stochino, F., Turco, E.: An analytical assessment of finite element and isogeometric analyses of the whole spectrum of Timoshenko beams. ZAMM J. Appl. Math. Mech. (2016). doi:10.1002/zamm.201500280

  12. Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids. 21(5), 562–577 (2016). doi:10.1177/1081286514531265

  13. Cazzani A., Wagner N., Ruge P., Stochino F.: Continuous transition between traveling mass and traveling oscillator using mixed variables. Int. J. Non-Linear Mech. 80, 82–95 (2016)

    Article  Google Scholar 

  14. Cazzani A., Ruge P.: Symmetric matrix-valued transmitting boundary formulation in the time-domain for soil-structure interaction problems. Soil Dyn. Earthq. Eng. 57, 104–120 (2014)

    Article  Google Scholar 

  15. Cazzani A., Ruge P.: Stabilization by deflation for sparse dynamical systems without loss of sparsity. Mech. Syst. Signal Process. 70(71), 664–681 (2016)

    Article  Google Scholar 

  16. Cazzani A., Malagù M., Turco E., Stochino F.: Constitutive models for strongly curved beams in the frame of isogeometric analysis. Math. Mech. Solids 21(2), 182–209 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chiaia, B., Kumpyak, O., Placidi, L., Maksimov, V.: Experimental analysis and modelling of two-way reinforced concrete slabs over different kinds of yielding supports under short-term dynamic loading. Eng. Struct. 96, 88–99. ISSN: 0141-0296. doi:10.1016/j.engstruct.2015.03.054 (2015)

  18. Contento A., Luongo A.: Static and dynamic consistent perturbation analysis for nonlinear inextensible planar frames. Comput. Struct. 123, 79–92 (2013)

    Article  Google Scholar 

  19. Cuomo, M., dell’Isola, F., Greco, L.: Simplified analysis of a generalized bias-test for fabrics with two families of inextensible fibres. Zeitschrift für angewandte Mathematik und Physik. (2016). doi:10.1007/s00033-016-0653-z

  20. Cuomo M., Ventura G.: Complementary energy approach to contact problems based on consistent augmented Lagrangian formulation. Math. Comput. Model. 28(4-8), 185–204 (1998)

    Article  MATH  Google Scholar 

  21. Del Vescovo D., Giorgio I.: Dynamic problems for metamaterials: review of existing models and ideas for further research. Int. J. Eng. Sci. 80, 153–172 (2014)

    Article  MathSciNet  Google Scholar 

  22. dell’Isola F., Guarascio M., Hutter K.: A variational approach for the deformation of a saturated porous solid. A second-gradient theory extending Terzaghi’s effective stress principle. Arch. Appl. Mech. 70(5), 323–337 (2000)

    Article  MATH  Google Scholar 

  23. dell’Isola F., Seppecher P., Madeo A.: How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach ” à la D’Alembert". Zeitschrift für angewandte Mathematik und Physik 63(6), 1119–1141 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. dell’Isola F., Batra R.C.: Saint-Venant’s problem for porous linear elastic materials. J. Elast. 47(1), 73–81 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. dell’Isola, F., Bucci, S., Battista, A.: Against the fragmentation of knowledge: the power of multidisciplinary research for the design of metamaterials. In: Advanced Methods of Continuum Mechanics for Materials and Structures, vol. 60 of the series, pp. 523–545. Advanced Structured Materials (2016)

  26. dell’Isola F., Madeo A., Seppecher P.: Cauchy tetrahedron argument applied to higher contact interactions. Arch. Rational Mech. Anal. 219(3), 1305–1341 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. dell’Isola F., d’Agostino M.V., Madeo A., Boisse P., Steigmann D.: Minimization of shear energy in two dimensional continua with two orthogonal families of inextensible fibers: The case of standard bias extension test. J. Elast. 122(2), 131–155 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. dell’Isola F., Steigmann D.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 118(1), 113–125 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Derendyayev N.V., Soldatov I.N.: The motion of a point mass along a vibrating string. J. Appl. Math. Mech. 61, 681–684 (1997)

    Article  Google Scholar 

  30. Dyniewicz B., Bajer C.I.: Paradox of a particle’s trajectory moving on a string. Arch. Appl. Mech. 79, 213–223 (2009)

    Article  MATH  Google Scholar 

  31. Eremeyev V.E., Lebedev L.P.: Existence of weak solutions in elasticity. Math. Mech. Solids 18(2), 204–217 (2013)

    Article  MathSciNet  Google Scholar 

  32. Eremeyev, V.A., Morozov, N.F.: The effective stiffness of a nanoporous rod. In: Doklady Physics, vol. 55, No. 6, pp. 279–282. MAIK Nauka/Interperiodica. (2010, June)

  33. Favino, M., Grillo, A., Krause, R.: A stability condition for the numerical simulation of poroelastic systems. In: Poromechanics V: Proceedings of the Fifth Biot Conference on Poromechanics, pp. 919–928. ASCE (2013)

  34. Ferretti M., Piccardo G.: Dynamic modeling of taut string carrying a traveling mass. Contin. Mech. Thermodyn. 25(2-4), 469–488 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Fryba L.: Vibrations of Solids and Structures Under Moving Loads. Academia, Prague (1972)

    Book  MATH  Google Scholar 

  36. Gabriele, S., Rizzi, N., Varano, V.: A 1D nonlinear TWB model accounting for in plane cross-section deformation. Int. J. Solids Struct. (2015). doi:10.1016/j.ijsolstr.2016.04.017

  37. Gao Q., Zhang J., Zhang H.W., Zhong W.X.: The exact solutions for a point mass moving along a stretched string on a Winkler foundation. Shock Vib. 2014, 1–11 (2014)

    Google Scholar 

  38. Gavrilov S.: Nonlinear investigation of the possibility to exceed the critical speed by a load on a string. Acta Mech. 154(1–4), 47–60 (2002)

    Article  MATH  Google Scholar 

  39. Giorgio, I., Andreaus, U., Scerrato, D., Braidotti, P.: Modeling of a non-local stimulus for bone remodeling process under cyclic load: application to a dental implant using a bioresorbable porous material. Math. Mech. Solids (2016) doi:10.1177/1081286516644867

  40. Giorgio I., Grygoruk R., dell’Isola F., Steigmann D.J.: Pattern formation in the three-dimensional deformations of fibered sheets. Mech. Res. Commun. 69, 164–171 (2015)

    Article  Google Scholar 

  41. Giorgio, I., Scerrato, D.: Multi-scale concrete model with rate dependent internal friction. Eur. J. Environ. Civil Eng. (2016). (doi:10.1080/19648189.2016.1144539)

  42. Giorgio, I., Andreaus, U., Scerrato, D., dell’Isola, F.: A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomech. Model. Mechanobiol. (2016). (doi:10.1007/s10237-016-0765-6)

  43. Greco L., Cuomo M.: B-Spline interpolation of Kirchhoff–Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251–269 (2013)

    Article  MathSciNet  Google Scholar 

  44. Greco L., Cuomo M.: On the force density method for slack cable nets. Int. J. Solids Struct. 49(13), 1526–1540 (2012)

    Article  Google Scholar 

  45. Greco L., Impollonia N., Cuomo M.: A procedure for the static analysis of cable structures following elastic catenary theory. Int. J. Solids Struct. 51(7), 1521–1533 (2014)

    Article  Google Scholar 

  46. Greco L., Cuomo M.: An implicit G1 multi patch B-spline interpolation for Kirchhoff-Love space rod. Comput. Methods Appl. Mech. Eng. 269, 173–197 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Greco L., Cuomo M.: An isogeometric implicit G1 mixed finite element for Kirchhoff space rods. Comput. Methods Appl. Mech. Eng. 298, 325–349 (2016)

    Article  MathSciNet  Google Scholar 

  48. Kezmane, A., Chiaia, B., Kumpyak, O., Maksimov, V., Placidi, L.: 3D Modeling of reinforced concrete slab with yielding supports subject to impact load. Eur. J. Environ. Civil Eng. (2016). ISSN: 1964-8189. doi:10.1080/19648189.2016.1194330

  49. Luongo, A., Piccardo, G.: Perturbation and numerical analysis of suspended cables traveled by a single mass. In: Proceedings of XIX AIMETA, Ancona, IT. (2009)

  50. Luongo A., Paolone A.: Multiple scale analysis for divergence-Hopf bifurcation of imperfect symmetric systems. J. Sound Vib. 218(3), 527–539 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  51. Luongo A., Di Egidio A., Paolone A.: On the proper form of the amplitude modulation equations for resonant systems. Nonlinear Dyn. 27(3), 237–254 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  52. Luongo A., Paolone A., Di Egidio A.: Multiple timescales analysis for 1: 2 and 1: 3 resonant Hopf bifurcations. Nonlinear Dyn. 34(3-4), 269–291 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  53. Luongo A., Piccardo G.: Dynamics of taut strings traveled by train of forces. Contin. Mech. Thermodyn. 28(1–2), 603–616 (2016)

    Article  MathSciNet  Google Scholar 

  54. Madeo A., Placidi L., Rosi G.: Towards the design of metamaterials with enhanced damage sensitivity: second gradient porous materials. Res Nondestr. Eval. 25(2), 99–124 (2014)

    Article  Google Scholar 

  55. Madeo A., dell’Isola F., Darve F.: A continuum model for deformable, second gradient porous media partially saturated with compressible fluids. J. Mech. Phys. Solids 61(11), 2196–2211 (2013)

    Article  MathSciNet  Google Scholar 

  56. Mofid M., Akin J.E.: Discrete element response of beams with traveling mass. Adv. Eng. Softw. 25(2), 321–331 (1996)

    Article  Google Scholar 

  57. Ouyang H.: Moving-load dynamic problems: A tutorial (with a brief overview). Mech. Syst. Signal Process. 25(6), 2039–2060 (2011)

    Article  Google Scholar 

  58. Pignataro, M., Ruta, G., Rizzi, N., Varano, V.: Effects of warping constraints and lateral restraint on the buckling of thin-walled frames. In: ASME 2009 International Mechanical Engineering Congress and Exposition, pp. 803–810. American Society of Mechanical Engineers. (2009, January)

  59. Placidi L., Faria S.H., Hutter K.: On the role of grain growth, recrystallization and polygonization in a continuum theory for anisotropic ice sheets. Annal. Glaciol. 39(1), 49–52 (2004)

    Article  Google Scholar 

  60. Placidi L., Hutter K., Faria S.H.: A critical review of the mechanics of polycrystalline polar ice. GAMM-Mitteilungen 29(1), 80–117 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  61. Placidi L., Rosi G., Giorgio I., Madeo A.: Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Math. Mech. Solids 19(5), 555–578 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  62. Placidi, L., Andreaus, U., Giorgio, I.: Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model. J. Eng. Math. (2016). doi:10.1007/s10665-016-9856-8

  63. Rinaldi A., Placidi L.: A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices. ZAMM J. Appl. Math. Mech. 94(10), 862–877 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  64. Rizzi, N., Varano, V.: On the postbuckling analysis of thin-walled frames. In: Thirteenth International Conference on Civil, Structural and Environmental Engineering Computing. Civil-Comp Press. (2011)

  65. Gabriele, S., Rizzi, N., Varano, V.: On the imperfection sensitivity of thin-walled frames. In: Topping, B.H.V. (ed.) Proceedings of the Eleventh International Conference on Computational Structures Technology. Civil-Comp Press, Stirlingshire (2012). doi:10.4203/ccp.99.15

  66. Scerrato, D., Zhurba Eremeeva, I.A., Lekszycki, T., Rizzi, N.L.: On the effect of shear stiffness on the plane deformation of linear second gradient pantographic sheets. ZAMM J. Appl. Math. Mech. doi:10.1002/zamm.201600066 (2016)

  67. Scerrato D., Giorgio I., Rizzi N.L.: Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations. Zeitschrift für angewandte Mathematik und Physik 67(3), 1–19 (2016)

    Article  MathSciNet  Google Scholar 

  68. dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. A 472(2185), 20150790 (2016)

  69. Smith C.E.: Motion of a stretched string carrying a moving mass particle. J. Appl. Mech. 31, 29–37 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  70. Steigmann D.J., dell’Isola F.: Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta Mech. Sin. 31(3), 373–382 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Della Corte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maria Bersani, A., Della Corte, A., Piccardo, G. et al. An explicit solution for the dynamics of a taut string of finite length carrying a traveling mass: the subsonic case. Z. Angew. Math. Phys. 67, 108 (2016). https://doi.org/10.1007/s00033-016-0703-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-016-0703-6

Mathematics Subject Classification

Keywords

Navigation