Skip to main content
Log in

Decompensative Gravity Anomalies Reveal the Structure of the Upper Crust of Antarctica

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

As Antarctica is almost entirely covered by thick ice shields impeding in situ measurements, information about upper crustal structures and sedimentary basins is still sparse and the analysis of the gravity anomalies offers new insights. Isostatic gravity anomalies are often used to investigate upper crust structures. However, compensating masses significantly reduce the gravity effect of unknown sedimentary and upper crustal structures. To separate these effects, we apply so-called decompensative corrections to the isostatic anomalies for the Antarctic continent, which reach values of up to ± 70 mGal. The obtained decompensative anomalies well correspond to the known sedimentary basins, such as in the areas of the Filchner-Ronne Ice Shelf and Lambert Graben, and also suggest the existence of other large sedimentary deposits both in West and East Antarctica, which are not or only sparsely mapped by existing seismic surveys, e.g. in coastal Dronning Maud Land and Enderby Land. A dipole-like structure exists at the Transantarctic Mountains and the Wilkes Subglacial Basin, suggesting the presence of isostatic disturbances linked to the dynamic uplift of the Transantarctic Mountains and thick sedimentary accumulations in the east. Extended positive anomalies in East Antarctica are likely related to the old and dense cratonic crust as well as to isostatic disturbances caused by the transition from local to regional compensation around the Lambert Graben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aitken, A. R. A., Young, D. A., Ferraccioli, F., Betts, P. G., Greenbaum, J. S., Richter, T. G., et al. (2014). The subglacial geology of Wilkes Land, East Antarctica. Geophysical Research Letters, 41(7), 2390–2400. https://doi.org/10.1002/2014GL059405.

    Article  Google Scholar 

  • An, M., Wiens, D. A., Zhao, Y., Feng, M., Nyblade, A. A., Kanao, M., et al. (2015). S-velocity model and inferred Moho topography beneath the Antarctic Plate from Rayleigh waves. Journal of Geophysical Research: Solid Earth, 120(1), 359–383. https://doi.org/10.1002/2014JB011332.

    Article  Google Scholar 

  • Anandakrishnan, S., Blankenship, D. D., Alley, R. B., & Stoffa, P. L. (1998). Influence of subglacial geology on the position of a West antarctic ice stream from seismic observations. Nature, 394(6688), 62–65. https://doi.org/10.1038/27889.

    Article  Google Scholar 

  • Audet, P., & Bürgmann, R. (2011). Dominant role of tectonic inheritance in supercontinent cycles. Nature Geosciences, 4, 184–187. https://doi.org/10.1038/ngeo1080.

    Article  Google Scholar 

  • Bamber, J. L., Ferraccioli, F., Joughin, I., Shepherd, T., Rippin, D. M., Siegert, M. J., et al. (2006). East Antartic ice stream tributary underlain by major sedimentary basin. Geology, 34(1), 33–36. https://doi.org/10.1130/G22160.1.

    Article  Google Scholar 

  • Baranov, A., Tenzer, R., & Bagherbandi, M. (2018). Combined gravimetric–seismic crustal model for Antarctica Surveys in Geophysics (Vol. 39). The Netherlands: Springer. https://doi.org/10.1007/s10712-017-9423-5.

    Book  Google Scholar 

  • Behrendt, J. C. (1999). Crustal and lithospheric structure of the west Antarctic Rift System from geophysical investigations—A review. Global and Planetary Change, 23(1–4), 25–44. https://doi.org/10.1016/S0921-8181(99)00049-1.

    Article  Google Scholar 

  • Behrendt, J. C., LeMasurier, W. E., Cooper, A. K., Tessensohn, F., Tréhu, A., & Damaske, D. (1991). Geophysical studies of the West Antarctic Rift System. Tectonics, 10(6), 1257–1273. https://doi.org/10.1029/91TC00868.

    Article  Google Scholar 

  • Bell, R. E., Blankenship, D. D., Finn, C. A., Morse, D. L., Scambos, T. A., Brozena, J. M., et al. (1998). Influence of subglacial geology on the onset of a West Antarctic ice stream from aerogeophysical observations. Nature, 394(6688), 58–62.

    Article  Google Scholar 

  • Blakely, R. J. (1995). Potential Theory in Gravity and Magnetic Applications. London: Cambridge University Press.

    Book  Google Scholar 

  • Braitenberg, C., Ebbing, J., & Götze, H. J. (2002). Inverse modelling of elastic thickness by convolution method—The eastern Alps as a case example. Earth and Planetary Science Letters, 202(2), 387–404. https://doi.org/10.1016/S0012-821X(02)00793-8.

    Article  Google Scholar 

  • Chen, B., Haeger, C., Kaban, M. K., & Petrunin, A. G. (2018). Variations of the effective elastic thickness reveal tectonic fragmentation of the Antarctic lithosphere. Tectonophysics, 1, 746. https://doi.org/10.1016/j.tecto.2017.06.012.

    Article  Google Scholar 

  • Christensen, N. I., & Mooney, W. D. (1995). Seismic velocity structure and composition of the continental crust: A global review. Journal of Geophysical Research, 100, 9761–9788.

    Article  Google Scholar 

  • Cordell, L., Zorin, Y. A., & Keller, G. R. (1991). The decompensative gravity anomaly and deep structure of the region of the Rio Grande rift (1978–2012). Journal of Geophysical Research Solid Earth, 96(B4), 6557–6568.

    Article  Google Scholar 

  • Curtis, M. L., & Riley, T. R. (2003). Mobilization of fluidized sediment during sill emplacement, western Dronning Maud Land, East Antarctica. Antarctic Science, 15(3), 393–398. https://doi.org/10.1017/S0954102003001408.

    Article  Google Scholar 

  • Danesi, S., & Morelli, A. (2001). Structure of the upper mantle under the Antarctic Plate from surface wave tomography. Geophysical Research Letters, 28(23), 4395–4398. https://doi.org/10.1029/2001GL013431.

    Article  Google Scholar 

  • Dill, R., Klemann, V., Martinec, Z., & Tesauro, M. (2015). Applying local Green’s functions to study the influence of the crustal structure on hydrological loading displacements. Journal of Geodynamics, 88, 14–22.

    Article  Google Scholar 

  • Ebbing, J., Braitenberg, C., & Wienecke, S. (2007). Insights into the lithospheric structure and the tectonic setting of the Barents Sea region from isostatic considerations. Geophysical Journal International, 171, 1390–1403. https://doi.org/10.1111/j.1365-246x.2007.03602.x.

    Article  Google Scholar 

  • Ferraccioli, F., Coren, F., Bozzo, E., Zanolla, C., Gandolfi, S., Tabacco, I., et al. (2001). Rifted(?) crust at the East Antarctic Craton margin: gravity and magnetic interpretation along a traverse across the Wilkes Subglacial Basin region. Earth and Planetary Science Letters, 192(3), 407–421. https://doi.org/10.1016/S0012-821X(01)00459-9.

    Article  Google Scholar 

  • Förste, C., Bruinsma, S., Abrikosov, O., Flechtner, F., Marty, J.-C., Lemoine, J.-M., et al. (2014). EIGEN-6C4—The latest combined global gravity field model including GOCE data up to degree and order 1949 of GFZ Potsdam and GRGS Toulouse. EGU General Assembly, 16, 3707. https://doi.org/10.5880/icgem.2015.1.

    Article  Google Scholar 

  • Frederick, B. C., Young, D. A., Blankenship, D. D., Richter, T. G., Kempf, S. D., Ferraccioli, F., et al. (2016). Distribution of subglacial sediments across the Wilkes Subglacial Basin, East Antarctica. Journal of Geophysical Research F: Earth Surface, 121(4), 790–813. https://doi.org/10.1002/2015JF003760.

    Article  Google Scholar 

  • Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., et al. (2013). Bedmap 2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere, 7(1), 375–393. https://doi.org/10.5194/tc-7-375-2013.

    Article  Google Scholar 

  • Gupta, S., Kanna, N., & Akilan, A. (2017). Volcanic passive continental margin beneath Maitri station in central DML, East Antarctica: Constraints from crustal shear velocity through receiver function modelling. Polar Research, 36, 1. https://doi.org/10.1080/17518369.2017.1332947.

    Article  Google Scholar 

  • Haeger, C., Kaban, M. K., Tesauro, M., Petrunin, A. G., & Mooney, W. D. (2019). 3D density, thermal and compositional model of the Antarctic lithosphere and implications for its evolution. Geochemistry, Geophysics, Geosystems, 2005, 1–20. https://doi.org/10.1029/2018GC008033.

    Article  Google Scholar 

  • Harrowfield, M., Holdgate, G. R., Wilson, C. J. L., & McLoughlin, S. (2005). Tectonic significance of the Lambert graben, East Antarctica: reconstructing the Gondwanan rift. Geology, 33(3), 197–200. https://doi.org/10.1130/G21081.1.

    Article  Google Scholar 

  • Hildenbrand, T. G., Griscom, A., Van Schmus, W. R., & Stuart, W. D. (1996). Quantitative investigations of the Missouri gravity low: A possible expression of a large, Late Precambrian batholith intersecting the New Madrid seismic zone (1978–2012). Journal of Geophysical Research Solid Earth, 101(B10), 21921–21942.

    Article  Google Scholar 

  • Holdgate, G. R., McLoughlin, S., Drinnan, A. N., Finkelman, R. B., Willett, J. C., & Chiehowsky, L. A. (2005). Inorganic chemistry, petrography and palaeobotany of Permian coals in the Prince Charles Mountains, East Antarctica. International Journal of Coal Geology, 63(1–2 SPEC. ISS.), 156–177. https://doi.org/10.1016/j.coal.2005.02.011.

    Article  Google Scholar 

  • Hübscher, C., Jokat, W., & Miller, H. (1996). Structure and origin of southern Weddell Sea crust: results and implications. Geological Society, London, Special Publications, 108(1), 201–211. https://doi.org/10.1144/GSL.SP.1996.108.01.15.

    Article  Google Scholar 

  • Jachens, R.C., & Moring, C. (1990). Maps of the thickness of Cenozoic deposits and the isostatic residual gravity over basement for Nevada. U.S. Geological Survey Open File Report, 90-404.

  • Jacobs, J., Elburg, M., Läufer, A., Kleinhanns, I. C., Henjes-Kunst, F., Estrada, S., et al. (2015). Two distinct Late Mesoproterozoic/Early Neoproterozoic basement provinces in central/eastern Dronning Maud Land, East Antarctica: the missing link, 15–21°E. Precambrian Research, 265, 249–272. https://doi.org/10.1016/j.precamres.2015.05.003.

    Article  Google Scholar 

  • Janik, T., Grad, M., Guterch, A., & Środa, P. (2014). The deep seismic structure of the Earth’s crust along the Antarctic Peninsula-A summary of the results from Polish geodynamical expeditions. Global and Planetary Change, 123, 213–222. https://doi.org/10.1016/j.gloplacha.2014.08.018.

    Article  Google Scholar 

  • Kaban, M. K., El Khrepy, S., & Al-Arifi, N. (2016). Isostatic model and isostatic gravity anomalies of the Arabian plate and surroundings. Pure and Applied Geophysics, 173(4), 1211–1221. https://doi.org/10.1007/s00024-015-1164-0.

    Article  Google Scholar 

  • Kaban, M. K., El Khrepy, S., & Al-Arifi, N. (2017). Importance of the decompensative correction of the gravity field for study of the upper crust: Application to the Arabian plate and surroundings. Pure and Applied Geophysics, 174(1), 349–358.

    Article  Google Scholar 

  • Kaban, M. K., Schwintzer, P., & Reigber, Ch. (2004). A new isostatic model of the lithosphere and gravity field. Journal of Geodesy, 78, 368–385.

    Article  Google Scholar 

  • Kaban, M. K., Schwintzer, P., & Tikhotsky, S. A. (1999). Global isostatic residual geoid and isostatic gravity anomalies. Geophysical Journal International, 136, 519–536.

    Article  Google Scholar 

  • Kaban, M. K., Tesauro, M., Mooney, W. D., & Cloetingh, S. A. P. L. (2014). Density, temperature, and composition of the North American lithosphere—New insights from a joint analysis of seismic, gravity, and mineral physics data: 1. Density structure of the crust and upper mantle. Geochemistry, Geophysics, Geosystems, 3, 15. https://doi.org/10.1002/2014gc005483.-&gt.

    Article  Google Scholar 

  • Kirby, J. F., & Swain, C. J. (2004). Global and local isostatic coherence from the wavelet transform. Geophysical Research Letters, 31(24), 1–5. https://doi.org/10.1029/2004GL021569.

    Article  Google Scholar 

  • Kirby, J. F., & Swain, C. J. (2011). Improving the spatial resolution of effective elastic thickness estimation with the fan wavelet transform. Computers & Geosciences, 37(9), 1345–1354. https://doi.org/10.1016/j.cageo.2010.10.008.

    Article  Google Scholar 

  • Krynauw, J. R., Behr, H. J., & Vandenkerkhof, A. M. (1994). Sill emplacement in wet sediments—Fluid inclusion and cathodoluminescence studies at grunehogna, western Dronning-Maud-Land, Antarctica. Journal of the Geological Society, 151, 777–794. https://doi.org/10.1144/gsjgs.151.5.0777.

    Article  Google Scholar 

  • Lamarque, G., Barruol, G., Fontaine, F. R., Bascou, J., & Menot, R.-P. (2015). Crustal and mantle structure beneath the Terre Adelie Craton, East Antarctica: insights from receiver function and seismic anisotropy measurements. Geophysical Journal International, 200(2), 807–821. https://doi.org/10.1093/gji/ggu430.

    Article  Google Scholar 

  • Langenheim, V.E., & Jachens, R.C. (1996). Gravity data collected along the Los Angeles regional seismic experiment (LARSE) and preliminary model of regional density variations in basement rocks, southern California. U.S. Geological Survey Open File Report, 96-682.

  • Laske, G., Masters, G., Ma, Z., Pasyanos, M. (2013). Update on CRUST1. 0—A 1-degree global model of Earth’s crust. Geophysical Research Abstracts, 15, 2658. Retrieved from http://meetingorganizer.copernicus.org/EGU2013/EGU2013-2658.pdf.

    Google Scholar 

  • Lawrence, J. F., Wiens, D. A., Nyblade, A. A., Anandakrishnan, S., Shore, P. J., & Voigt, D. (2006). Crust and upper mantle structure of the transantarctic mountains and surrounding regions from receiver functions, surface waves, and gravity: Implications for uplift models. Geochemistry, Geophysics, Geosystems. https://doi.org/10.1029/2006GC001282.

    Article  Google Scholar 

  • Leitchenkov, G. L., & Kudryavtzev, G. A. (1997). Structure and Origin of the Earth’s Crust in the Weddell Sea Embayment (beneath the Front of the Filchner and Ronne Ice Shelves) from Deep Seismic Sounding data. Polarforschung, 67(3), 143–154.

    Google Scholar 

  • Lindeque, A., Gohl, K., Henrys, S., Wobbe, F., & Davy, B. (2016). Seismic stratigraphy along the Amundsen Sea to Ross Sea continental rise: a cross-regional record of pre-glacial to glacial processes of the West Antarctic margin. Palaeogeography, Palaeoclimatology, Palaeoecology, 443, 183–202. https://doi.org/10.1016/j.palaeo.2015.11.017.

    Article  Google Scholar 

  • Lisker, F., Brown, R., & Fabel, D. (2003). Denudational and thermal history along a transect across the Lambert Graben, northern Prince Charles Mountains, Antarctica, derived from apatite fission track thermochronology. Tectonics, 22(5), 1055. https://doi.org/10.1029/2002TC001477.

    Article  Google Scholar 

  • Mooney, W. D., & Kaban, M. K. (2010). The North American upper mantle: density, composition, and evolution. Journal of Geophysical Research, 115, B12424. https://doi.org/10.1029/2010jb000866.

    Article  Google Scholar 

  • Morelli, A., & Danesi, S. (2004). Seismological imaging of the Antarctic continental lithosphere: A review. Global and Planetary Change, 42, 155–165. https://doi.org/10.1016/j.gloplacha.2003.12.005.

    Article  Google Scholar 

  • O’Donnell, J. P., & Nyblade, A. A. (2014). Antarctica’s hypsometry and crustal thickness: Implications for the origin of anomalous topography in East Antarctica. Earth and Planetary Science Letters, 388, 143–155. https://doi.org/10.1016/j.epsl.2013.11.051.

    Article  Google Scholar 

  • Schaffer, J., Timmermann, R. (2016). Greenland and Antarctic ice sheet topography, cavity geometry, and global bathymetry (RTopo-2), links to NetCDF files. PANGAEA. https://doi.org/10.1594/PANGAEA.856844 (Supplement to: Schaffer, J., Timmermann, R., Arndt, J. E., Kristensen, S. S., Mayer, C., Morlighem, M., Steinhage, D. (2016). A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry. Earth System Science Data, 8(2), 543–557. https://doi.org/10.5194/essd-8-543-2016)

  • Scheinert, M., Ferraccioli, F., Schwabe, J., Bell, R., Studinger, M., Damaske, D., et al. (2016). New Antarctic gravity anomaly grid for enhanced geodetic and geophysical studies in Antarctica. Geophysical Research Letters, 43(2), 600–610. https://doi.org/10.1002/2015GL067439.

    Article  Google Scholar 

  • Simpson, R. W., Jachens, R. C., Blakely, R. J., & Saltus, R. W. (1986). A new isostatic residual gravity map of the conterminous United States with a discussion on the significance of isostatic residual anomalies. Journal of Geophysical Research: Solid Earth, 91, 8348–8372.

    Article  Google Scholar 

  • Smith, A. G., & Drewry, D. J. (1984). Delayed phase change due to hot asthenosphere causes Transantarctic uplift? Nature, 309, 536–538.

    Article  Google Scholar 

  • Smith, A. M., Jordan, T. A., Ferraccioli, F., & Bingham, R. G. (2013). Influence of subglacial conditions on ice stream dynamics: Seismic and potential field data from Pine Island Glacier, West Antarctica. Journal of Geophysical Research: Solid Earth, 118(4), 1471–1482. https://doi.org/10.1029/2012JB009582.

    Article  Google Scholar 

  • Stagg, H. M. J., Colwel, J. B., Direen, N. G., O’Brien, P. E., Bernardel, G., Borissova, I., et al. (2004). Geology of the continental margin of Enderby and Mac. Robertson Lands, East Antarctica: Insights from a regional data set. Marine Geophysical Researches, 25(3–4), 183–219. https://doi.org/10.1007/s11001-005-1316-1.

    Article  Google Scholar 

  • ten Brink, U., & Stern, T. (1992). Rift flank uplifts and Hinterland basins—Comparison of the Transantarctic Mountains with the great escarpment of Southern Africa. Journal of Geophysical Research-Solid Earth, 97(B1), 569–585. https://doi.org/10.1029/91JB02231.

    Article  Google Scholar 

  • Tesauro, M., Audet, P., Kaban, M. K., Bürgmann, R., & Cloetingh, S. (2012). The effective elastic thickness of the continental lithosphere: Comparison between rheological and inverse approaches. Geochemistry Geophysics Geosystems (G3), 13, Q09001.

    Google Scholar 

  • Tesauro, M., Kaban, M. K., Aitken, A. (2018). Temperature and compositional variation in the Australian lithospheric mantle (Geophysical Research Abstracts; vol. 20, EGU2018-7661, 2018), General Assembly European Geosciences Union.

  • Trey, H., Cooper, A. K., Pellis, G., Della Vedova, B., Cochrane, G., Brancolini, G., et al. (1999). Transect across the West Antarctic rift system in the Ross Sea, Antarctica. Tectonophysics, 301(1–2), 61–74. https://doi.org/10.1016/S0040-1951(98)00155-3.

    Article  Google Scholar 

  • Turcotte, D. L., & Schubert, G. (1982). Geodynamics (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • van Wijk, J. W., Lawrence, J. F., & Driscoll, N. W. (2008). Formation of the Transantarctic Mountains related to extension of the West Antarctic Rift system. Tectonophysics, 458(1–4), 117–126. https://doi.org/10.1016/j.tecto.2008.03.009.

    Article  Google Scholar 

  • Wienecke, S., & Braitenberg, C. (2007). A new analytical solution estimating the flexural rigidity in the Central Andes. Geophysical Journal International. https://doi.org/10.1111/j.1365-246X.2007.3396.x.

    Article  Google Scholar 

  • Wilson, D., Aster, R., West, M., Ni, J., Grand, S., Gao, W., et al. (2005). Lithospheric structure of the Rio Grande rift. Nature, 433(7028), 851–855.

    Article  Google Scholar 

  • Wobbe, F., Lindeque, A., & Gohl, K. (2014). Anomalous South Pacific lithosphere dynamics derived from new total sediment thickness estimates off the West Antarctic margin. Global and Planetary Change, 123, 139–149. https://doi.org/10.1016/j.gloplacha.2014.09.006.

    Article  Google Scholar 

  • Zorin, Y. A., Belichenko, V. G., Turutanov, E. K., Kozhevnikov, V. M., Ruzhentsev, S. V., Dergunov, A. B., et al. (1993). The south Siberia-central Mongolia transect. Tectonophysics, 225(4), 361–378.

    Article  Google Scholar 

  • Zorin, Y. A., Pismenny, B. M., Novoselova, M. R., & Turutanov, E. K. (1985). Decompensative gravtity anomalies. Geologia i Geofizika, 8, 104–108.

    Google Scholar 

Download references

Acknowledgements

We thank three anonymous reviewers and the editor Carla Braitenberg for their valuable comments that have greatly improved the manuscript. This study was supported by DFG (German Research Foundation), SPP-1788 Dynamic Earth (Grants KA2669/4-1 and KA2669/4-2). The results of this study are available in digital form from the authors upon request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carina Haeger.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haeger, C., Kaban, M.K. Decompensative Gravity Anomalies Reveal the Structure of the Upper Crust of Antarctica. Pure Appl. Geophys. 176, 4401–4414 (2019). https://doi.org/10.1007/s00024-019-02212-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02212-5

Keywords

Navigation