Skip to main content
Log in

Nonlinear Completely Positive Maps and Dilation Theory for Real Involutive Algebras

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

A real seminormed involutive algebra is a real associative algebra \({\mathcal{A}}\) endowed with an involutive antiautomorphism * and a submultiplicative seminorm p with p(a*) = p(a) for \({a\in \mathcal{A}}\). Then \({\mathtt{ball}(\mathcal{A}, p) := \{ a \in \mathcal{A} \: p(a) < 1\}}\) is an involutive subsemigroup. For the case where \({\mathcal{A}}\) is unital, our main result asserts that a function \({\varphi \: \mathtt{ball}(\mathcal{A},p) \to B(V)}\), V a Hilbert space, is completely positive (defined suitably) if and only if it is positive definite and analytic for any locally convex topology for which \({\mathtt{ball}(\mathcal{A},p)}\) is open. If \({\eta_\mathcal{A} \: \mathcal{A} \to C^{*}(\mathcal{A},p)}\) is the enveloping C*-algebra of \({(\mathcal{A},p)}\) and \({e^{C^{*}(\mathcal{A}, p)}}\) is the c 0-direct sum of the symmetric tensor powers \({S^n(C^{*}(\mathcal{A},p))}\), then the above two properties are equivalent to the existence of a factorization \({\varphi = \Phi \circ \Gamma}\), where \({\Phi \: e^{C^{*}(\mathcal{A}, p)} \to B(V)}\) is linear completely positive and \({\Gamma(a) = \sum_{n = 0}^\infty \eta_\mathcal{A}(a)^{\otimes n}}\). We also obtain a suitable generalization to non-unital algebras. An important consequence of this result is a description of the unitary representations of the unitary group \({{\rm U}(\mathcal{A})}\) with bounded analytic extensions to \({\mathtt{ball}(\mathcal{A},p)}\) in terms of representations of the C*-algebra \({e^{C^{*}(\mathcal{A}, p)}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ando, T., Choi, M.D.: Nonlinear completely positive maps. In: Nagel, R., Schlotterbeck, U., Wolff, M.P.H. (eds.) Aspects of Positivity in Functional Analysis, North-Holland Math. Stud., vol. 122, pp. 3–13. North-Holland, Amsterdam (1986)

  2. Arveson W.: Subalgebras of C*-algebras. Acta Math. 123, 141–224 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arveson, W.: Nonlinear states on C*-algebras. In: Jorgensen, P.E.T., Muhly, P.S. (eds.) Operator Algebras and Mathematical Physics, Contemp. Math., vol. 62, pp. 283–343. Amer. Math. Soc., Providence (1987)

  4. Arveson, W.: Dilation theory yesterday and today. In: Axler, S., Rosenthal, P., Sarason, D. (eds.) A glimpse at Hilbert space operators. Oper. Theory Adv. Appl., vol. 207, pp. 99–123. Birkhäuser, Basel (2010)

  5. Beltiţă D., Neeb K.-H.: Schur–Weyl theory for C*-algebras. Math. Nachr. 285(10), 1170–1198 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Beltiţă, D., Neeb, K.-H.: Non-linear representations of C*-algebras and their applications (in preparation)

  7. Bhatt S.J.: Stinespring representability and Kadison’s Schwarz inequality in non-unital Banach star algebras and applications. Proc. Indian Acad. Sci. Math. Sci. 108(3), 283–303 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Biller H.: Continuous inverse algebras with involution. Forum Math. 22(6), 1033–1059 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bochnak J., Siciak J.: Polynomials and multilinear mappings in topological vector spaces. Studia Math. 39, 59–76 (1971)

    MATH  MathSciNet  Google Scholar 

  10. Christensen J.P.R., Ressel P.: Functions operating on positive definite matrices and a theorem of Schoenberg. Trans. Am. Math. Soc. 243, 89–95 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dixmier J.: Les C*-algèbres et leurs représentations. Gauthier-Villars, Paris (1964)

    Google Scholar 

  12. Enomoto, T., Izumi, M.: Indecomposable characters of infinite dimensional groups associated with operator algebras. J. Math. Soc. Japan (2015, to appear)

  13. Fell J.M.G., Doran R.S.: Representations of *-Algebras, Locally Compact Groups, and Banach-*-Algebraic Bundles I, II. Academic Press, London (1988)

    Google Scholar 

  14. Glöckner, H.: Infinite-dimensional Lie groups without completeness restrictions. In: Strasburger, A., Hilgert, J., Neeb, K.-H., Wojtyński, W. (eds.) Geometry and Analysis on Finite- and Infinite-dimensional Lie Groups. Banach Center Publ., vol. 55, pp. 43–59. Polish Acad. Sci., Warsaw (2002)

  15. Glöckner, H., Neeb, K.-H.: Infinite Dimensional Lie Groups, vol. I, Basic Theory and Main Examples. (in preparation)

  16. Grundling, H.: Generalizing group algebras, J. London Math. Soc. 72, 742–762 (2005) [An erratum is in J. London Math. Soc. 77, 270–271 (2008)]

  17. Hiai F., Nakamura Y.: Extensions of nonlinear completely positive maps. J. Math. Soc. Japan 39(3), 367–384 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  18. Horn R.A.: The theory of infinitely divisible matrices and kernels. Trans. Am. Math. Soc. 136, 269–286 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  19. Janssens, B., Neeb, K.H.: Norm continuous unitary representations of Lie algebras of smooth sections. Int. Math. Res. Notices (2015, to appear). arXiv:1302.2535 [math.RT]

  20. Johnson B.E.: An introduction to the theory of centralizers. Proc. Lond. Math. Soc. (3) 14, 299–320 (1964)

    Article  MATH  Google Scholar 

  21. Kirillov A.A.: Representation of the infinite-dimensional unitary group. Dokl. Akad. Nauk. SSSR 212, 288–290 (1973)

    MathSciNet  Google Scholar 

  22. Neeb K.-H.: Holomorphy and Convexity in Lie Theory, de Gruyter Expositions in Mathematics, vol. 28. Walter de Gruyter & Co., (2000)

    Book  Google Scholar 

  23. Neeb K.-H.: A complex semigroup approach to group algebras of infinite dimensional Lie groups. Semigroup Forum 77, 5–35 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Neeb K.-H.: On analytic vectors for unitary representations of infinite dimensional Lie groups. Annales de l’Inst. Fourier 61:5, 1441–1476 (2011)

    Google Scholar 

  25. Neeb, K.-H.: Unitary representations of unitary groups. In: Mason, G., Penkov, I., Wolf, J.A. (eds.) Developments and Retrospectives in Lie Theory, Developments in Mathematics, vol. 37, pp. 197–243 (2014)

  26. Nessonov, N.I.: Schur–Weyl duality for the unitary groups of II1-factors (preprint). arXiv:1312.0824 [RT]

  27. Okayasu T.: On the tensor products of C*-algebras. Tôhoku Math. J. (2) 18, 325–331 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  28. Olshanski G.I.: Unitary representations of the infinite-dimensional classical groups U(p, ∞), SO0(p,∞), Sp(p, ∞), and of the corresponding motion groups. Funct. Anal. Appl. 12:3, 185–195 (1978)

    Article  Google Scholar 

  29. Paulsen V.: Completely Bounded Maps and Operator Algebras, Cambridge Studies in Advanced Mathematics, vol. 78. CUP, Cambridge (2002)

    Google Scholar 

  30. Riesz F., Sz.-Nagy B.: “Leçons d’analyse fonctionnelle”, Sixième édition. Akadémiai Kiadó, Budapest (1972)

    Google Scholar 

  31. Rosenberg, J.: Structure and applications of real C*-algebras. arXiv:1505.04091 [math.OA.]

  32. Sebestyén Z.: States and *-representations II. Period. Math. Hung. 17(4), 247–254 (1986)

    Article  MATH  Google Scholar 

  33. Stinespring W.F.: Positive functions on C*-algebras. Proc. Am. Math. Soc. 6, 211–216 (1955)

    MATH  MathSciNet  Google Scholar 

  34. Takesaki M.: Theory of Operator Algebras. I, Encyclopaedia of Mathematical Sciences, vol. 124. Operator Algebras and Non-commutative Geometry, vol. 5. Springer, Berlin (2002)

    Google Scholar 

  35. Treves F.: Topological Vector Spaces, Distributions, and Kernels. Academic Press, New York (1967)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Beltiţă.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beltiţă, D., Neeb, KH. Nonlinear Completely Positive Maps and Dilation Theory for Real Involutive Algebras. Integr. Equ. Oper. Theory 83, 517–562 (2015). https://doi.org/10.1007/s00020-015-2244-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-015-2244-3

Mathematics Subject Classification

Keywords

Navigation