Skip to main content
Log in

Dilation theory in finite dimensions and matrix convexity

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We establish a finite-dimensional version of the Arveson-Stinespring dilation theorem for unital completely positive maps on operator systems. This result can be seen as a general principle to deduce finite-dimensional dilation theorems from their classical infinite-dimensional counterparts. In addition to providing unified proofs of known finite-dimensional dilation theorems, we establish finite-dimensional versions of Agler’s theorem on rational dilation on an annulus, of Berger’s dilation theorem for operators of numerical radius at most 1, and of the Putinar-Sandberg numerical range dilation theorem. As a key tool, we prove versions of Carathéodory’s and of Minkowski’s theorems for matrix convex sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Agler, Rational dilation on an annulus, Annals of Mathematics 121 (1985), 537–563.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Agler, J. Harland and B. J. Raphael, Classical function theory, operator dilation theory, and machine computation on multiply-connected domains, Memoirs of the American Mathematical Society 191 (2008).

  3. V. Alekseev, T. Netzer and A. Thom, Quadratic modules, C*-algebras, and free convexity, Transactions of the American Mathematical Society 372 (2019), 7525–7539.

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Ando, On a pair of commutative contractions, Acta Universitatis Szegediensis. Acta Scientiarum Mathematicarum 24 (1963), 88–90.

    MathSciNet  MATH  Google Scholar 

  5. W. Arveson, Subalgebras of C*-algebras, Acta Mathematicca 123 (1969), 141–224.

    Article  MATH  Google Scholar 

  6. W. Arveson, Subalgebras of C*-algebras. II, Acta Mathematica 128 (1972), 271–308.

    Article  MathSciNet  MATH  Google Scholar 

  7. C. A. Berger, A strange dilation theorem, Notices of the American Mathematical Society 12 (1965), 590.

    Google Scholar 

  8. K. Bickel, P. Gorkin, A. Greenbaum, T. Ransford, F. Schwenninger and E. Wegert, Crouzeix’s conjecture and related problems, Computational Methods and Function Theory 20 (2020), 701–728.

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Blackadar, Operator Algebras, Encyclopaedia of Mathematical Sciences, Vol. 122, Springer, Berlin, 2006.

    Book  MATH  Google Scholar 

  10. T. Caldwell, A. Greenbaum and K. Li, Some extensions of the Crouzeix-Palencia result, SIAM Journal on Matrix Analysis and Applications 39 (2018), 769–780.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. D. Choi, Completely positive linear maps on complex matrices, Linear Algebra and its Applications 10 (1975), 285–290.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. D. Choi, The full C*-algebra of the free group on two generators, Pacific Journal of Mathematics 87 (1980), 41–48.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Cohen, Dilations of matricies, https://arxiv.org/abs/1503.07334.

  14. K. Courtney and T. Shulman, Elements of C*-algebras attaining their norm in a finite-dimensional representation, Canadian Journal of Mathematical 71 (2019), 93–111.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Crouzeix, Numerical range and functional calculus in Hilbert space, Journal of Functional Analysis 244 (2007), 668–690.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Crouzeix and C. Palencia, The numerical range is a \((1 + \sqrt 2) - spectral\) set, SIAM Journal on Matrix Analysis and Applications 38 (2017), 649–655.

    Article  MathSciNet  MATH  Google Scholar 

  17. K. R. Davidson, C*-algebras by Example, Fields Institute Monographs, Vol. 6, American Mathematical Society, Providence, RI, 1996.

    MATH  Google Scholar 

  18. K. R. Davidson and A. P. Donsig, Real analysis and Applications, Undergraduate Texts in Mathematics, Springer, New York, 2010

    Book  MATH  Google Scholar 

  19. K. R. Davidson, A. Dor-On, O. Shalit and B. Solel, Dilations, inclusions of matrix convex sets, and completely positive maps, International Mathematics Research Notices (2017), 4069–4130.

  20. K. R. Davidson and M. Kennedy, The Choquet boundary of an operator system, Duke Mathematical Journal 164 (2015), 2989–3004.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. De Brabanter, The classification of rational rotation C*-algebras, Archiv der Mathematik 43 (1984), 79–83.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. A. Dritschel and S. McCullough, The failure of rational dilation on a triply connected domain, Journal of the American Mathematical Society 18 (2005), 873–918.

    Article  MathSciNet  MATH  Google Scholar 

  23. E. G. Effros and S. Winkler, Matrix convexity: operator analogues of the bipolar and Hahn-Banach theorems, Journal of Functional Analysis 144 (1997), 117–152.

    Article  MathSciNet  MATH  Google Scholar 

  24. E. Egerváry, On the contractive linear transformations of n-dimensional vector space, Acta Universitatis Szegediensis. Acta Scientiarum Mathematicarum 15 (1954), 178–182.

    MathSciNet  MATH  Google Scholar 

  25. E. Evert and J. W. Helton, Arveson extreme points span free spectrahedra, Mathematische Annalen 375 (2019), 629–653.

    Article  MathSciNet  MATH  Google Scholar 

  26. E. Evert, J. W. Helton, I. Klep and S. McCullough, Extreme points of matrix convex sets, free spectrahedra, and dilation theory, Journal of Geometric Analysis 28 (2018), 1373–1408.

    Article  MathSciNet  MATH  Google Scholar 

  27. D. R. Farenick, C*-convexity and matricial ranges, Canadian Journal of Mathematics 44 (1992), 280–297.

    Article  MathSciNet  MATH  Google Scholar 

  28. D. R. Farenick, Extremal matrix states on operator systems, Journal of the London Mathematical Society 61 (2000), 885–892.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. H. Fuller, M. Hartz and M. Lupini, Boundary representations of operator spaces, and compact rectangular matrix convex sets, Journal of Operator Theory 79 (2018), 139–172.

    MathSciNet  MATH  Google Scholar 

  30. M. Gerhold and O. Shalit, Dilations of q-commuting unitaries, International Mathematics Research Notices, to appear, Article no. rnaa093.

  31. J. W. Helton, I. Klep and S. McCullough, Matrix convex hulls of free semialgebraic sets, Transactions of the American Mathematical Society 368 (2016), 3105–3139.

    Article  MathSciNet  MATH  Google Scholar 

  32. J. W. Helton and S. McCullough, Every convex free basic semi-algebraic set has an LMI representation, Annals of Mathematics 176 (2012), 979–1013.

    Article  MathSciNet  MATH  Google Scholar 

  33. D. K. Keshari and N. Mallick, q-commuting dilation, Proceedings of the American Mathematical Society 147 (2019), 655–669.

    Article  MathSciNet  MATH  Google Scholar 

  34. T.-L. Kriel, An introduction to matrix convex sets and free spectrahedra, Complex Analysis and Operator Theory 13 (2019), 3251–3335.

    Article  MathSciNet  MATH  Google Scholar 

  35. J. Levick and R. T. W. Martin, Matrix n-dilations of quantum channels, Operators and Matrices 12 (2018), 977–995.

    Article  MathSciNet  MATH  Google Scholar 

  36. E. Levy and O. M. Shalit, Dilation theory in finite dimensions: the possible, the impossible and the unknown, Rocky Mountain Journal of Mathematics 44 (2014), 203–221.

    Article  MathSciNet  MATH  Google Scholar 

  37. J. E. McCarthy and O. M. Shalit, Unitary N-dilations for tuples of commuting matrices, Proceedings of the American Mathematical Society 141 (2013), 563–571.

    Article  MathSciNet  MATH  Google Scholar 

  38. P. B. Morenz, The structure of C*-convex sets, Canadian Journal of Mathematics 46 (1994), 1007–1026.

    Article  MathSciNet  MATH  Google Scholar 

  39. V. Müller, Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, Operator Theory: Advances and Applications, Vol. 139, Birkhäuser, Basel, 2007.

    MATH  Google Scholar 

  40. K. Okubo and T. Ando, Constants related to operators of class Cρ, Manuscripta Mathematica 16 (1975), 385–394.

    Article  MathSciNet  MATH  Google Scholar 

  41. V. Paulsen, Completely Bounded Maps and Operator Algebras, Cambridge Studies in Advanced Mathematics, Vol. 78, Cambridge University Press, Cambridge, 2002.

    MATH  Google Scholar 

  42. M. Putinar and S. Sandberg, A skew normal dilation on the numerical range of an operator, Mathematische Annalen 331 (2005), 345–357.

    Article  MathSciNet  MATH  Google Scholar 

  43. T. Ransford and F. L. Schwenninger, Remarks on the Crouzeix-Palencia proof that the numerical range is a \((1 + \sqrt 2) - spectral\) set, SIAM Journal on Matrix Analysis and Applications 39 (2018), 342–345.

    Article  MathSciNet  MATH  Google Scholar 

  44. Z. Sebestyén, Anticommutant lifting and anticommuting dilation, Proceedings of the American Mathematical Society 121 (1994), 133–136.

    Article  MathSciNet  MATH  Google Scholar 

  45. B. Sz.-Nagy, Sur les contractions de l’espace de Hilbert, Acta Universitatis Szegediensis. Acta Scientiarum Mathematicarum 15 (1953), 87–92.

    MathSciNet  MATH  Google Scholar 

  46. B. Sz.-Nagy, C. Foias, H. Bercovici and L. Kérchy, Harmonic Analysis of Operators on Hilbert Space, Universitext, Springer, New York, 2010.

    Book  MATH  Google Scholar 

  47. C. Webster and S. Winkler, The Krein-Milman theorem in operator convexity, Transactions of the American Mathematical Society 351 (1999), 307–322.

    Article  MathSciNet  MATH  Google Scholar 

  48. G. Wittstock, On matrix order and convexity, in Functional Analysis: Surveys and Recent Results, III (Paderborn, 1983), North-Holland Mathematics Studies, Vol. 90, North-Holland, Amsterdam, 1984, pp. 175–188.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to John McCarthy, to Michael Dritschel and to an anonymous referee for asking questions that led to Corollaries 4.8 and 4.7. Moreover, the authors thank David Sherman for bringing [38] to their attention. Finally, the authors greatly appreciate the careful reading and helpful comments of an anonymous referee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hartz.

Additional information

M. H. was partially supported by a Feodor Lynen Fellowship and by a GIF grant.

M. L. was partially supported by the NSF Grant DMS-1600186, by a Research Establishment Grant from Victoria University of Wellington, and by a Marsden Fund Fast-Start Grant from the Royal Society of New Zealand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartz, M., Lupini, M. Dilation theory in finite dimensions and matrix convexity. Isr. J. Math. 245, 39–73 (2021). https://doi.org/10.1007/s11856-021-2202-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-021-2202-5

Navigation