Skip to main content

Advertisement

Log in

Calcitonin studies in the rhesus monkey

  • Original Scientific Reports
  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

This study evaluates the utility of the rhesus monkey ( Macaca mulatta ) as a model for calcitonin (iCT) dynamics in humans. Two different anticalcitonin antisera were used, each having different region specificities for the hormone. Basal levels of iCT in both serum and urine were lower than those encountered in humans, whether measured with midportion (Ab-IIIb) or carboxyl terminal (Ab-IV) antisera. The totally thyroidectomized monkey continues to have detectable serum iCT while, in contrast to humans, urine iCT is undetectable by direct assay but measurable after concentration. Immunoperoxidase studies revealed a relatively larger concentration of C cells in the thyroid of the monkey, with, as in humans, a distribution in the central region along the median axis of the lateral lobes. Extraction of iCT from the thyroid gland demonstrated a higher concentration in the monkey than in humans. Many extrathyroidal tissues of the monkey contained iCT, which did not differ immunochemically from that in thyroid; this finding is also true of comparable human tissue. The very high concentration of iCT in liver decreased markedly after thyroidectomy, suggesting that hepatic iCT may be receptor-bound hormone of thyroid origin. Other extrathyroidal sources of iCT persisted after thyroidectomy in the monkey, with the highest concentrations being found in thymus and in lung. The demonstration of the presence of extrathyroidal iCT may have important implications for its function as a tumor marker and for its presumed role in calcium metabolism. These studies demonstrate that the rhesus monkey, regardless of some differences from man, is nonetheless a useful animal model for the investigation of the pathophysiology of calcitonin.

Résumé

L'étude analyse la possibilité d'utiliser le singe rhesus (Macaca mulatta) comme modèle pour la dynamique de la calcitonine (iCT) chez l'homme. Deux antisérums différents ont été employés, chacun d'entre eux étant spécifique pour un segment de la molécule hormonale. Mesurés avec l'antisérum pour la portion moyenne (Ab-IIIb) ou l'antisérum pour le terminal carboxyle (Ab-IV), les taux de base d'iCT dans le sérum et l'urine sont plus bas chez le rhesus que chez l'homme. Après thyroidectomie totale, il persiste, chez le singe comme chez l'homme, de l'iCT le sérum; dans les urines cependant, iCT n'est plus détectable chez le singe par essai direct, mais peut Être dosé après concentration. Les études à l'immunoperoxydase révèlent des concentrations assez importantes de cellules C dans la thyroide du singe; comme chez l'homme, elles sont surtout localisées dans la région centrale, le long de l'axe médian de chaque lobe thyroidien. L'extraction d'iCT de la glande thyroide donne des concentrations plus élevées chez le singe que chez l'homme. Comme chez l'homme, de nombreux tissues extrathyroidiens du singe contiennent une iCT qui ne diffère pas de l'iCT thyroidienne au point de vue immunochimique. La concentration très elevée d'iCT dans le foie se réduit fortement après thyroidectomie, ce qui suggère que l'iCT hépatique peut Être une hormone d'origine thyroidienne fixée sur un récepteur. Après thyroidectomie chez le singe, il persiste d'autres sources extrathyroidiennes d'iCT, les concentrations les plus élevées étant trouvées dans le thymus et le poumon. La démonstration de cette iCT extrathyroidienne peut avoir des implications importantes pour son rÔle en tant que marqueur tumoral et pour sa fonction dans le métabolisme calcique. Ces études démontrent que, malgré certaines différences entre l'homme et le singe rhesus, celui-ci est un modèle utile pour étudier la physiopathologic de la calcitonine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tashjian, A.H. Jr., Howland, B.G., Melvin, K.E.W.: Immunoassay of human calcitonin: Clinical assessment, relation to serum calcium and studies in patients with medullary carcinoma. N. Engl. J. Med.283:890, 1970

    Google Scholar 

  2. Silva, O.L., Snider, R.H., Moore, C.F., Becker, K.L.: Urine calcitonin as a test for medullary thyroid cancer: A new screening procedure. Ann. Surg.189:269, 1979

    Google Scholar 

  3. Silva, O.L., Becker, K.L., Primack, A., Doppman, J., Snider, R.H.: Increased serum calcitonin in bronchogenic cancer. Chest69:495, 1976

    Google Scholar 

  4. Becker, K.L., Snider, R.H., Silva, O.L., Moore, C.F.: Calcitonin heterogeneity in lung cancer and medullary thyroid cancer. Acta Endocrinol.89:89, 1978

    Google Scholar 

  5. Silva, O.L., Broder, L.E., Doppman, J.L., Snider, R.H., Moore, C.F., Cohen, M.H., Becker, K.L.: Calcitonin as a marker for bronchogenic cancer: A prospective study. Cancer44:680, 1979

    Google Scholar 

  6. Silva, O.L., Becker, K.L.: High plasma calcitonin levels in breast cancer. Br. Med. J.1:460, 1976

    Google Scholar 

  7. Chopra, I.J.: A radioimmunoassay for measurement of thyroxine in unextracted serum. J. Clin. Endocrinol. 0 Metab.34:938, 1972

    Google Scholar 

  8. Siegel, S.J., Line, W.F., Yang, N.S.T., Kwong, A., Frank, C.: Solid phase triiodothyronine radioimmunoassay. J. Clin. Endocrinol. Metab.37:526, 1973

    Google Scholar 

  9. Mitchell, M.L., Harden, A.B., O'Rourke, M.E.: The in vitro resin sponge uptake of triiodothyronine from serum in thyroid disease and in pregnancy. J. Clin. Endocrinol. Metab.20:1474, 1960

    Google Scholar 

  10. Odell, W.D., Wilbur, J.F., Paul, W.E.: Radioimmunoassay of thyrotropin in human serum. J. Clin. Endocrinol. Metab.25:1179, 1965

    Google Scholar 

  11. Silva, O.L., Snider, R.H., Becker, K.L.: Radioimmunoassay of human calcitonin in plasma. Clin. Chem.20:337, 1974

    Google Scholar 

  12. Snider, R.H., Moore, C.F., Silva, O.L., Becker, K.L.: Radioimmunoassay of calcitonin in human urine. Anal. Chem.50:449, 1978

    Google Scholar 

  13. Snider, R.H., Silva, O.L., Moore, C.F., Becker, K.L.: Immunochemical heterogeneity of calcitonin in man: Effect of radioimmunoassay. Clin. Chem. Acta76:1, 1977

    Google Scholar 

  14. Sternberger, L.A., Hardy, P.H., Jr., Cuculis, J.J., Meyer, H.G.: The unlabeled antibody enzyme method of immunochemistry: Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J. Histochem. Cytochem.18:315, 1970

    Google Scholar 

  15. Becker, K.L., Monaghan, K.G., Silva, O.L.: Immunocytochemical localization of calcitonin in Kultschitzky cells of human lung. Arch. Pathol. Lab. Med.104:196, 1980

    Google Scholar 

  16. Becker, K.L., Snider, R.H., Moore, C.F., Silva, O.L.: Calcitonin in extrathyroidal tissues in man. Acta Endocrinol.92:746, 1979

    Google Scholar 

  17. Haglund, H.: Isoelectric focusing in pH gradients: A technique for fractionation and characterization of ampholytes. In Methods of Biochemical Analysis, Vol. 19, C. Glick, editor, New York, Interscience Publishers, 1971, pp. 1–104

    Google Scholar 

  18. Becker, K.L., Geelhoed, G., O'Neill, W., Monaghan, K.G., Snider, R.H., Moore, C.F., Silva, O.L.: Calcitonin in tissues of thyroidectomized monkey. Experentia36:609, 1980

    Google Scholar 

  19. Harris, R.S., Moor, J.R., Wanner, R.L.: Calcium metabolism of the normal rhesus monkey. J. Clin. Invest.40:1766, 1961

    Google Scholar 

  20. Hargis, G.K., Reynolds, W.A., Williams, G.A., Kawahara, W., Jackson, B., Bowser, N., Pitkin, R.M.: Radioimmunoassay of calcitonin in the plasma of rhesus monkey and man. Clin. Chem.24:595, 1978

    Google Scholar 

  21. Butler, W.R., Krey, L.C., Espinosa-Campos, J., Knobil, E.: Surgical disconnection of the medial basal hypothalamus and pituitary function in the rhesus monkey. III. Thyroxine secretion. Endocrinology96:1094, 1975

    Google Scholar 

  22. Azukizawa, M., Murata, Y., Ikenoue, T., Martin, C.B., Jr., Hershman, J.M.: Effect of thyrotropinreleasing hormone on secretion of thyrotropin, prolactin, thyroxine, and triiodothyronine in pregnant and fetal rhesus monkeys. J. Clin. Endocrinol. Metab.43:1020, 1976

    Google Scholar 

  23. Das, V.K., Das, S.: Distribution of calcitonin cells in the thyroid glands of normal adult rhesus monkey (Macaca mulatto). Experentia34:541, 1978

    Google Scholar 

  24. Wolfe, H.J., Voelkel, E.F., Tashjian, A.H., Jr.: Distribution of calcitonin-containing cells in the normal adult human thyroid gland: A correlation of morphology with peptide content. J. Clin. Endocrinol. Metab.38:688, 1974

    Google Scholar 

  25. Kameda, Y.: The occurrence and distribution of the parafollicular cells in the thyroid, parathyroid-IV and thymus-IV in some mammals. Arch. Histol. Jpn.33:283, 1971

    Google Scholar 

  26. Pearse, A.G.E.: The diffuse neuroendocrine system and the APUD concept: Related “endocrine” peptides in brain, intestine, pituitary, placenta, and anuran cutaneous glands. Med. Biol.55:115, 1977

    Google Scholar 

  27. Pearse, A.G.E., Takor Takor, T.: Embryology of the diffuse neuroendocrine system and its relationship to the common peptides. Fed. Proc.38:2288, 1979

    Google Scholar 

  28. Silva, O.L., Wisneski, L.A., Cyrus, J., Snider, R.H., Moore, C.F., Becker, K.L.: Calcitonin in thyroidectomized patients. Am. J. Med. Sci.275:149, 1978

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by the Ella O. Latham Trust, Washington, D.C.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geelhoed, G.W., Becker, K.L., O'Neill, W. et al. Calcitonin studies in the rhesus monkey. World J. Surg. 5, 579–586 (1981). https://doi.org/10.1007/BF01655013

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01655013

Keywords

Navigation