Skip to main content
Log in

Role of the reticular formation in motor control. Study of some intrareticular mechanisms and functional properties of the reticulospinal system

  • Published:
Neurophysiology Aims and scope

Abstract

Participation of the reticular formation and descending reticulospinal system in the motor control functions of the spinal cord is examined. The data indicate that the reticular formation may participate in the regulation of specific motor actions. This is shown by the results of experiments to analyze the properties of membranes of reticulospinal neurons and the principles of organization of cortico-reticular monosynaptic relays, and to the investigation of characteristics of responses of "ensembles" of reticular neurons in cats, and also by data obtained in a study of correlation of unit activity in the reticular formation with movements elaborated in rats. The functional role of differential characteristics of the reticular formation is discussed and prospects for future research into reticular membranous, neurochemical, and neuronal mechanisms as a step toward the understanding of reticular control of motor functions are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. P. G. Kostyuk, Structure and Function of Descending Systems of the Spinal Cord [in Russian], Nauka, Leningrad (1973).

    Google Scholar 

  2. G. N. Orlovskii, "Work of reticulospinal neurons during locomotion," Biofizika,15, No. 4, 728 (1970).

    Google Scholar 

  3. A. I. Pilyavskii, "Neuronal organization of fast- and slowly conducting components of the pyramidal system," Neirofiziologiya,10, No. 5, 534 (1978).

    Google Scholar 

  4. A. I. Shapovalov, A. A. Grantyn', and G. G. Kurchavyi, "Short-latency reticulospinal synaptic projections on alpha-motoneurons," Byull. Éksp. Biol. Med.,64, No. 7, 3 (1967).

    Google Scholar 

  5. M. L. Shik, F. V. Severin, and G. N. Orlovskii, "Brain-stem structures responsible for evoked locomotion," Fiziol. Zh. SSSR,53, No. 9, 1125 (1967).

    Google Scholar 

  6. K. L. Barnes, "A quantitative investigation of somatosensory coding in single cells of the cat mesencephalic reticular formation," Exp. Neurol.,50, No. 2, 180 (1976).

    Google Scholar 

  7. D. Bowsher, "Place and modality analysis in caudal reticular formation," J. Physiol. (London),209, No. 2, 473 (1970).

    Google Scholar 

  8. R. Baker and A. Berthoz (editors), Control of Gaze by Brain Stem Neurons, North Holland Biomedical Press, Amsterdam (1977).

    Google Scholar 

  9. H. G. J. M. Kuypers and G. F. Martin (ed.), Descending Pathways to the Spinal Cord, Elsevier, Amsterdam (1982), (Prog. Brain Res, Vol. 54).

    Google Scholar 

  10. E. Dolbakyan, N. Hernandez-Mesa, and J. Bureš, "Skilled forelimb movements and unit activity in motor cortex and caudate nucleus in rats," Neuroscience,2, No. 1, 73 (1977).

    Google Scholar 

  11. J. C. Eccles, R. A. Nicoll, D. W. F. Schwarz, et al., "Reticulospinal neurons with and without monosynaptic inputs from cerebellar nuclei," J. Neurophysiol.,38, No. 3, 513 (1975).

    Google Scholar 

  12. J. C. Eccles, R. A. Nicoll, D. W. F. Schwarz, et al., "Topographic studies on medial reticular nucleus," J. Neurophysiol.,39, No. 1, 109 (1976).

    Google Scholar 

  13. E. V. Evarts, "Relation of discharge frequency to conduction velocity in pyramidal tract neurons," J. Neurophysiol.,28, No. 2, 216 (1965).

    Google Scholar 

  14. A. P. Gokin, J. Pavlasek, and P. Duda, "Neuronal mechanisms of spinobulbo-spinal activity," Neuroscience,2, No. 2, 297 (1977).

    Google Scholar 

  15. M. R. Gold and A. R. Martin, "Characteristics of inhibitory postsynaptic currents in brain stem neurons of the lamprey," J. Physiol. (London),342, 85 (1983).

    Google Scholar 

  16. R. Granit, D. Kernell, and G. K. Shortess, "Quantitative aspects of repetitive firing of mammalian motoneurons caused by injected currents," J. Physiol. (London),168, No. 4, 911 (1963).

    Google Scholar 

  17. F. S. Grover and J. S. Buchvald, "Correlation of cell size with amplitude of background fast activity in specific brain nuclei," J. Neurophysiol.,33, No. 1, 160 (1970).

    Google Scholar 

  18. E. Jankowska, S. Lund, A. Lindberg, and O. Pompeiano, "Inhibitory effects evoked through ventral reticulospinal pathways," Arch. Ital. Biol.,106, No. 1, 124 (1968).

    Google Scholar 

  19. N. Kanamori, E. Sakai, and M. Jouvet, "Neuronal activity specific to paradoxical sleep in the ventromedial medullary reticular formation of unrestrained cats," Brain Res.,189, No. 2, 251 (1980).

    Google Scholar 

  20. D. Kernell, "Input resistance, electrical excitability, and size of ventral horn cells in cat spinal cord," Science,152, 1637 (1966).

    Google Scholar 

  21. W. L. Kilmer, W. S. McCulloch, and J. Blum, "Some mechanisms for a theory of the reticular formation," in: Systems Theory and Biology, ed. N. D. Mesarović, Springer, Berlin (1968), pp. 286–375.

    Google Scholar 

  22. H. Koike, N. Mano, Y. Okada, and T. Oshima, "Repetitive impulses generated in fast and slow pyramidal tract cells by intracellularly applied current steps," Exp. Brain Res.,11, No. 2, 263 (1970).

    Google Scholar 

  23. M. Kuno and J. T. Miyahara, "Analysis of synaptic efficiency in spinal motoneurons from ‘quantum’ aspects," J. Physiol. (London),201, No. 2, 479 (1969).

    Google Scholar 

  24. A. D. Legatt, J. Arezzo, and H. G. Vaugman, "Averaged multiple unit activity as an estimate of phasic changes in local neuronal activity: effects of volume-conducted potentials," J. Neurosci. Methods,2, No. 2, 203 (1980).

    Google Scholar 

  25. D. S. Leitner, A. S. Powers, and H. S. Hoffman, "The neural substrate of the startle response," Physiol. Behav.,25, No. 3, 291 (1980).

    Google Scholar 

  26. R. Llinás and C. A. Terzuolo, "Mechanisms of supraspinal actions upon spinal cord activities. Reticular inhibitory mechanisms on alpha extensor motoneurons," J. Neurophysiol.,27, No. 4, 579 (1964).

    Google Scholar 

  27. R. Y. Moore, "The reticular formation: monoamine neuron systems," in: The Reticular Formation Revisited, J. A. Hobbson and M. A. B. Brazier, eds., Raven Press, New York (1980), pp. 67–81.

    Google Scholar 

  28. J. Pavlásek, A. P. Gokin, and P. Duda, "Visceral pain: responses of the reticular formation neurons to gall bladder distension," J. Physiol. (Paris),73, 335 (1977).

    Google Scholar 

  29. J. Pavlásek, J. Kundrát, and P. Strauss, "The reticular formation differentiates heterotopic stimuli," Physiol. Bohemoslov.,29, No. 2, 125 (1980).

    Google Scholar 

  30. J. Pavlásek, J. Kundŕat, M. Saling, and A. P. Gokin, "Heterotopic stimuli-related potential gradients in a small volume of the medullary reticular formation in the cat," Neuroscience,7, No. 3, 725 (1982).

    Google Scholar 

  31. J. Pavlásek and P. Strauss, "Synaptic responses of reticulospinal neurons in the cat: spinal cord dorsal funiculi are an effective source," Neurosci. Lett.,15, No. 2, 205 (1979).

    Google Scholar 

  32. B. W. Peterson, "Reticulospinal projections to spinal motor nuclei," Annu. Rev. Physiol.,41, No. 1, 127 (1979).

    Google Scholar 

  33. P. Petrovicky, "Reticular formation and its raphe system. 1. Cytoarchitectonics with comparative aspects," Acta Univ. Carolinae Med. (Prague),99, 1 (1980).

    Google Scholar 

  34. A. I. Pilyavsky, "Characteristics of fast and slow corticobulbar fibre projections to reticulospinal neurons," Brain Res.,85, No. 1, 49 (1975).

    Google Scholar 

  35. A. I. Pilyavsky and A. P. Gokin, "Investigation of the cortico-reticulo-spinal connections in cats," Neuroscience,3, No. 1, 99 (1978).

    Google Scholar 

  36. O. Pompeiano, "Reticular formation," in: Somatosensory System, ed. A. Iggo, Springer, Berlin (1973) (Handbook of Sensory Physiology, Vol. 11), pp. 381–488.

    Google Scholar 

  37. M. E. Scheibel and A. B. Scheibel, "Structural substrates for integrative patterns in the brain stem reticular core," in: Reticular Formation of the Brain, H. H. Jasper, ed., Little Brown, Boston (1958), pp. 31–55.

    Google Scholar 

  38. M. E. Scheibel and A. B. Scheibel, "Anatomical basis of attention mechanisms in vertebrate brains," in: The neurosciences. A Study Program, G. C. Quarton et al., eds., Rockefeller University Press, New York (1967), pp. 577–602.

    Google Scholar 

  39. M. E. Scheibel and A. B. Scheibel, "The brain stem reticular core — and integrative matrix," in: Systems Theory and Biology, M. D. Mesarović, ed., Springer, Berlin (1968), pp. 261–285.

    Google Scholar 

  40. A. J. Shapovalov, "Neuronal organization and synaptic mechanisms of supraspinal motor control in vertebrates," Rev. Physiol. Biochem. Pharmacol. (Berlin)72, 1 (1975).

    Google Scholar 

  41. M. Shimamura and I. Kogure, "Reticulospinal tracts involved in the spino-bulbo-spinal reflex in cats," Brain Res.,172, No. 1, 13 (1979).

    Google Scholar 

  42. M. Shimamura and R. B. Livingston, "Longitudinal conduction systems serving spinal and brain stem coordination," J. Neurophysiol.,26, No. 2, 258 (1963).

    Google Scholar 

  43. J. M. Siegel, "Behavioral functions of the reticular formation," Brain Res. Rev.,1, No. 1, 69 (1979).

    Google Scholar 

  44. J. M. Siegel and D. J. McGinty, "Pontine reticular formation neurons: relationship of discharge to motor activity," Science,196, 678 (1977).

    Google Scholar 

  45. P. Strauss, M. Saling, A. I. Pilyavsky, et al., "Electrophysiological characteristics of reticulospinal neurons in relation to the conduction velocity of their axons," Physiol. Bohemoslov.,31, No. 1, 101 (1982).

    Google Scholar 

  46. M. Tohyama, K. Sakai, D. Salvert, et al., "Spinal projections from the lower brainstem in the cat as demonstrated by the horseradish peroxidase technique. 1. Origins of the reticulospinal tracts and their funicular trajectories," Brain Res.,173, No. 2, 383 (1979).

    Google Scholar 

  47. K. N. Westlund, R. M. Bowker, M. G. Ziegler, and J. D. Coulter, "Descending noradrenergic projections and their spinal terminations," in: Descending Pathways to the Spinal Cord, ed. H. G. J. M. Kuypers and G. F. Martin, Elsevier, Amsterdam (1982), (Prog. Brain Res., Vol. 57).

    Google Scholar 

  48. W. O. Wickelgren, "Physiological and anatomical characteristics of reticulospinal neurones in lamprey," J. Physiol. (London),270, No. 1, 89 (1977).

    Google Scholar 

  49. J. H. Wolstencroft, "Reticulospinal neurons," J. Physiol. (London),174, No. 1, 91 (1964).

    Google Scholar 

Download references

Authors

Additional information

Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Czechoslovakia. Translated from Neirofiziologiya, Vol. 16, No. 5, pp. 637–651, September–October, 1984.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlasek, J., Saling, M. & Strauss, P. Role of the reticular formation in motor control. Study of some intrareticular mechanisms and functional properties of the reticulospinal system. Neurophysiology 16, 482–494 (1984). https://doi.org/10.1007/BF01052704

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01052704

Keywords

Navigation