Skip to main content
Log in

A perturbative QCD study of dijets in p+Pb collisions at the LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Inspired by the recent measurements of the CMS collaboration, we report a QCD study of dijet production in proton+lead collisions at the LHC involving large-transverse-momentum jets, p T  ≳ 100 GeV. Examining the inherent uncertainties of the next-to-leading order perturbative QCD calculations and their sensitivity to the free proton parton distributions (PDFs), we observe a rather small, typically much less than 5% clearance for the shape of the dijet rapidity distribution within approximately 1.5 units around the midrapidity. Even a more stable observable is the ratio between the yields in the positive and negative dijet rapidity, for which the baseline uncertainty can be made negligible by imposing a symmetric jet rapidity acceptance. Both observables prove sensitive to the nuclear modifications of the gluon distributions, the corresponding uncertainties clearly exceeding the estimated baseline uncertainties from the free-proton PDFs and scale dependence. From a theoretical point of view, these observables are therefore very suitable for testing the validity of the collinear factorization and have a high potential to provide precision constraints for the nuclear PDFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Loizides, First results from p-Pb collisions at the LHC, arXiv:1308.1377 [INSPIRE].

  2. C. Salgado et al., Proton-nucleus collisions at the LHC: scientific opportunities and requirements, J. Phys. G 39 (2012) 015010 [arXiv:1105.3919] [INSPIRE].

    Article  ADS  Google Scholar 

  3. J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of hard processes in QCD, Adv. Ser. Direct. High Energy Phys. 5 (1988) 1 [hep-ph/0409313] [INSPIRE].

    Google Scholar 

  4. J.C. Collins, D.E. Soper and G.F. Sterman, Factorization for short distance hadron-hadron scattering, Nucl. Phys. B 261 (1985) 104 [INSPIRE].

    Article  ADS  Google Scholar 

  5. J. Albacete et al., Predictions for p+Pb collisions at \( \sqrt{{{s_{NN }}}}=5 \) TeV, Int. J. Mod. Phys. E 22 (2013) 1330007 [arXiv:1301.3395] [INSPIRE].

    Article  ADS  Google Scholar 

  6. A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  7. H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].

    ADS  Google Scholar 

  8. S. Alekhin, J. Blumlein and S. Moch, Parton distribution functions and benchmark cross sections at NNLO, Phys. Rev. D 86 (2012) 054009 [arXiv:1202.2281] [INSPIRE].

    ADS  Google Scholar 

  9. S. Forte and G. Watt, Progress in the determination of the partonic structure of the proton, Annu. Rev. Nucl. Part. Sci. 63 (2013) 291 [arXiv:1301.6754] [INSPIRE].

    Article  ADS  Google Scholar 

  10. R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].

    Article  ADS  Google Scholar 

  11. K. Eskola, H. Paukkunen and C. Salgado, EPS09: a new generation of NLO and LO nuclear parton distribution functions, JHEP 04 (2009) 065 [arXiv:0902.4154] [INSPIRE].

    Article  ADS  Google Scholar 

  12. D. de Florian, R. Sassot, P. Zurita and M. Stratmann, Global analysis of nuclear parton distributions, Phys. Rev. D 85 (2012) 074028 [arXiv:1112.6324] [INSPIRE].

    ADS  Google Scholar 

  13. M. Hirai, S. Kumano and T.-H. Nagai, Determination of nuclear parton distribution functions and their uncertainties in next-to-leading order, Phys. Rev. C 76 (2007) 065207 [arXiv:0709.3038] [INSPIRE].

    ADS  Google Scholar 

  14. I. Schienbein et al., PDF nuclear corrections for charged and neutral current processes, Phys. Rev. D 80 (2009) 094004 [arXiv:0907.2357] [INSPIRE].

    ADS  Google Scholar 

  15. K. Kovarik et al., CTEQ nuclear parton distribution functions, arXiv:1307.3454 [INSPIRE].

  16. K.J. Eskola, Global analysis of nuclear PDFslatest developments, Nucl. Phys. A 910-911 (2013) 163 [arXiv:1209.1546] [INSPIRE].

    Article  Google Scholar 

  17. K. Kovarik et al., Nuclear corrections in neutrino-nucleus DIS and their compatibility with global NPDF analyses, Phys. Rev. Lett. 106 (2011) 122301 [arXiv:1012.0286] [INSPIRE].

    Article  ADS  Google Scholar 

  18. H. Paukkunen and C.A. Salgado, Agreement of neutrino deep inelastic scattering data with global fits of parton distributions, Phys. Rev. Lett. 110 (2013) 212301 [arXiv:1302.2001] [INSPIRE].

    Article  ADS  Google Scholar 

  19. H. Paukkunen and C.A. Salgado, Compatibility of neutrino DIS data and global analyses of parton distribution functions, JHEP 07 (2010) 032 [arXiv:1004.3140] [INSPIRE].

    Article  ADS  Google Scholar 

  20. CMS collaboration, Study of W boson production in PbPb and pp collisions at \( \sqrt{{{s_{NN }}}}=2.76 \) TeV, Phys. Lett. B 715 (2012) 66 [arXiv:1205.6334] [INSPIRE].

    ADS  Google Scholar 

  21. CMS collaboration, Study of Z boson production in PbPb collisions at \( \sqrt{{{s_{NN }}}}==2.76 \), Phys. Rev. Lett. 106 (2011) 212301 [arXiv:1102.5435] [INSPIRE].

    Article  ADS  Google Scholar 

  22. ATLAS collaboration, Measurement of Z boson production in PbPb collisions at \( \sqrt{{{s_{NN }}}}=2.76 \) TeV with the ATLAS detector, Phys. Rev. Lett. 110 (2013) 022301 [arXiv:1210.6486] [INSPIRE].

    Article  ADS  Google Scholar 

  23. CMS collaboration, Measurement of isolated photon production in pp and PbPb collisions at \( \sqrt{{{s_{NN }}}}=2.76 \) TeV, Phys. Lett. B 710 (2012) 256 [arXiv:1201.3093] [INSPIRE].

    ADS  Google Scholar 

  24. ALICE collaboration, M. Wilde, Measurement of direct photons in pp and PbPb collisions with ALICE, Nucl. Phys. A904-905 (2013) 573c [arXiv:1210.5958] [INSPIRE].

    Article  Google Scholar 

  25. H. Paukkunen and C.A. Salgado, Constraints for the nuclear parton distributions from Z and W production at the LHC, JHEP 03 (2011) 071 [arXiv:1010.5392] [INSPIRE].

    Article  ADS  Google Scholar 

  26. R. Chatterjee, H. Holopainen, I. Helenius, T. Renk and K.J. Eskola, Elliptic flow of thermal photons from event-by-event hydrodynamic model, Phys. Rev. C 88 (2013) 034901 [arXiv:1305.6443] [INSPIRE].

    ADS  Google Scholar 

  27. M. Klasen, C. Klein-Boesing, F. Koenig and J. Wessels, How robust is a thermal photon interpretation of the ALICE low-p T data?, arXiv:1307.7034 [INSPIRE].

  28. ALICE collaboration, Transverse momentum distribution and nuclear modification factor of charged particles in p+Pb collisions at \( \sqrt{{{s_{NN }}}}=5.02 \) TeV, Phys. Rev. Lett. 110 (2013) 082302 [arXiv:1210.4520] [INSPIRE].

    Article  ADS  Google Scholar 

  29. I. Helenius, K.J. Eskola, H. Honkanen and C.A. Salgado, Impact-parameter dependent nuclear parton distribution functions: EPS09s and EKS98s and their applications in nuclear hard processes, JHEP 07 (2012) 073 [arXiv:1205.5359] [INSPIRE].

    Article  ADS  Google Scholar 

  30. J.L. Albacete, A. Dumitru and C. Marquet, The initial state of heavy-ion collisions, Int. J. Mod. Phys. A 28 (2013) 1340010 [arXiv:1302.6433] [INSPIRE].

    Article  ADS  Google Scholar 

  31. N. Armesto, H. Ma, M. Martinez, Y. Mehtar-Tani and C.A. Salgado, Coherence phenomena between initial and final state radiation in a dense QCD medium, arXiv:1308.2186 [INSPIRE].

  32. CMS collaboration, Study of dijet momentum balance and pseudorapidity distributions in p+Pb collisions at \( \sqrt{{{s_{NN }}}}=5.02 \) TeV, CMS-PAS-HIN-13-001, CERN, Geneva Switzerland (2013).

  33. C. Stewart et al., Production of high-p t jets in hadron-nucleus collisions, Phys. Rev. D 42 (1990) 1385 [INSPIRE].

    ADS  Google Scholar 

  34. E706 collaboration, G. Alverson et al., Structure of the recoiling system in direct photon and π 0 production by π and p beams at 500 GeV/c, Phys. Rev. D 49 (1994) 3106 [INSPIRE].

    ADS  Google Scholar 

  35. D.Y. Golubkov and Y. Golubkov, Study of the jet shape at 920 GeV/c in proton-nucleus intereactions with HERA-B detector, Eur. Phys. J. C 51 (2007) 25 [nucl-ex/0611026] [INSPIRE].

    Article  ADS  Google Scholar 

  36. PHENIX collaboration, B. Sahlmueller, Cold nuclear matter effects in d+Au collisions at PHENIX, Nucl. Phys. A 904-905 (2013) 795c [arXiv:1210.5547] [INSPIRE].

    Article  Google Scholar 

  37. STAR collaboration, J. Kapitan, Jet studies in 200 GeV p+p and d+Au collisions from the STAR experiment at RHIC, Nucl. Phys. A 855 (2011) 412 [arXiv:1012.1804] [INSPIRE].

    Article  ADS  Google Scholar 

  38. Y. He, B.-W. Zhang and E. Wang, Cold nuclear matter effects on dijet productions in relativistic heavy-ion reactions at LHC, Eur. Phys. J. C 72 (2012) 1904 [arXiv:1110.6601] [INSPIRE].

    Article  ADS  Google Scholar 

  39. J. Owens, Large momentum transfer production of direct photons, jets and particles, Rev. Mod. Phys. 59 (1987) 465 [INSPIRE].

    Article  ADS  Google Scholar 

  40. CMS collaboration, Measurements of differential jet cross sections in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the CMS detector, Phys. Rev. D 87 (2013) 112002 [arXiv:1212.6660] [INSPIRE].

    ADS  Google Scholar 

  41. ATLAS collaboration, Measurement of inclusive jet and dijet production in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Phys. Rev. D 86 (2012) 014022 [arXiv:1112.6297] [INSPIRE].

    ADS  Google Scholar 

  42. J. Gao et al., MEKS: a program for computation of inclusive jet cross sections at hadron colliders, Comput. Phys. Commun. 184 (2013) 1626 [arXiv:1207.0513] [INSPIRE].

    Article  ADS  Google Scholar 

  43. Z. Kunszt and D.E. Soper, Calculation of jet cross-sections in hadron collisions at order \( \alpha_S^3 \), Phys. Rev. D 46 (1992) 192 [INSPIRE].

    ADS  Google Scholar 

  44. S.D. Ellis, Z. Kunszt and D.E. Soper, Two jet production in hadron collisions at order \( \alpha_S^3 \) in QCD, Phys. Rev. Lett. 69 (1992) 1496 [INSPIRE].

    Article  ADS  Google Scholar 

  45. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  46. S. Dooling, P. Gunnellini, F. Hautmann and H. Jung, Longitudinal momentum shifts, showering and nonperturbative corrections in matched NLO-shower event generators, Phys. Rev. D 87 (2013) 094009 [arXiv:1212.6164] [INSPIRE].

    ADS  Google Scholar 

  47. M. Dasgupta, L. Magnea and G.P. Salam, Non-perturbative QCD effects in jets at hadron colliders, JHEP 02 (2008) 055 [arXiv:0712.3014] [INSPIRE].

    Article  ADS  Google Scholar 

  48. G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [INSPIRE].

    Article  ADS  Google Scholar 

  49. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  50. T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].

    Article  ADS  Google Scholar 

  51. A. Martin, R. Roberts, W. Stirling and R. Thorne, Parton distributions incorporating QED contributions, Eur. Phys. J. C 39 (2005) 155 [hep-ph/0411040] [INSPIRE].

    Article  ADS  Google Scholar 

  52. NNPDF collaboration, R.D. Ball et al., Parton distributions with QED corrections, arXiv:1308.0598 [INSPIRE].

  53. STAR collaboration, B. Abelev et al., Inclusive π 0 , η and direct photon production at high transverse momentum in p + p and d + Au collisions at \( \sqrt{{{s_{NN }}}}=200 \) GeV, Phys. Rev. C 81 (2010) 064904 [arXiv:0912.3838] [INSPIRE].

    ADS  Google Scholar 

  54. PHENIX collaboration, S. Adler et al., Centrality dependence of π 0 and η production at large transverse momentum in \( \sqrt{{{s_{NN }}}}=200 \) GeV d+Au collisions, Phys. Rev. Lett. 98 (2007) 172302 [nucl-ex/0610036] [INSPIRE].

    Article  ADS  Google Scholar 

  55. R. Sassot, M. Stratmann and P. Zurita, Fragmentations functions in nuclear media, Phys. Rev. D 81 (2010) 054001 [arXiv:0912.1311] [INSPIRE].

    ADS  Google Scholar 

  56. S. Dittmaier, A. Huss and C. Speckner, Weak radiative corrections to dijet production at hadron colliders, JHEP 11 (2012) 095 [arXiv:1210.0438] [INSPIRE].

    Article  ADS  Google Scholar 

  57. F. Arleo and T. Gousset, Measuring gluon shadowing with prompt photons at RHIC and LHC, Phys. Lett. B 660 (2008) 181 [arXiv:0707.2944] [INSPIRE].

    Article  ADS  Google Scholar 

  58. F. Arleo, K.J. Eskola, H. Paukkunen and C.A. Salgado, Inclusive prompt photon production in nuclear collisions at RHIC and LHC, JHEP 04 (2011) 055 [arXiv:1103.1471] [INSPIRE].

    Article  ADS  Google Scholar 

  59. I. Helenius, K.J. Eskola and H. Paukkunen, Centrality dependence of inclusive prompt photon production in d+Au, Au+Au, p+Pb and Pb+Pb collisions, JHEP 05 (2013) 030 [arXiv:1302.5580] [INSPIRE].

    Article  ADS  Google Scholar 

  60. M.L. Miller, K. Reygers, S.J. Sanders and P. Steinberg, Glauber modeling in high energy nuclear collisions, Ann. Rev. Nucl. Part. Sci. 57 (2007) 205 [nucl-ex/0701025] [INSPIRE].

    Article  ADS  Google Scholar 

  61. A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and J. Pires, Second order QCD corrections to jet production at hadron colliders: the all-gluon contribution, Phys. Rev. Lett. 110 (2013) 162003 [arXiv:1301.7310] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannu Paukkunen.

Additional information

ArXiv ePrint: 1308.6733

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eskola, K.J., Paukkunen, H. & Salgado, C.A. A perturbative QCD study of dijets in p+Pb collisions at the LHC. J. High Energ. Phys. 2013, 213 (2013). https://doi.org/10.1007/JHEP10(2013)213

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)213

Keywords

Navigation