Skip to main content
Log in

Determination of mass hierarchy with medium baseline reactor neutrino experiments

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the sensitivity of future medium baseline reactor antineutrino experiments on the neutrino mass hierarchy. By using the standard χ 2 analysis, we find that the sensitivity depends strongly on the baseline length L and the energy resolution \( {{\left( {{{{\delta E}} \left/ {E} \right.}} \right)}^2}={{\left( {{a \left/ {{\sqrt{{{E \left/ {\mathrm{MeV}} \right.}}}}} \right.}} \right)}^2}+{b^2} \), where a and b parameterize the statistical and systematic uncertainties, respectively. The optimal length is found to be L ~ 40 − 55 km, where a slightly shorter L in the range is preferred for poorer energy resolution. The running time needed to determine the mass hierarchy also depends strongly on the energy resolution; for a 5 kton detector (with 12% weight fraction of free proton) placed at L ~ 50 km away from a 20 GWth reactor, an experiment would determine the mass hierarchy with (Δχ 2)min ~ 9 on average after 5 (15) or more years of running if the energy resolution (a, b) = (2, 0.5)% ((3, 0.5)%) is achieved. The probability that an experiment with the expectation of \( \overline{{{{{\left( {\varDelta {\chi^2}} \right)}}_{\min }}}}=9 \) resolves the mass hierarchy is estimated to be ~ 90% by taking into account statistical fluctuation in the data. On the other hand, the experiment can measure the mixing parameters accurately, achieving δ sin2 2θ 12 ~ 4 × 10−3, \( \delta \left( {m_2^2-m_1^2} \right) \) ~ 0.03 × 10−5eV2 , and \( \delta \left| {m_3^2-m_1^2} \right| \) ~ 0.007 × 10−3eV2, in 5 years, almost independently of the energy resolution for a < 3% and b < 1%. In order to compare our simple (Δχ 2)min results with those obtained by simulating many experiments, we develop an efficient method to estimate the uncertainty of (Δχ 2)min, and the probability for determining the right mass hierarchy by an experiment is presented as a function of the mean (Δχ 2)min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Daya Bay collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].

    Article  ADS  Google Scholar 

  2. Daya Bay collaboration, F. An et al., Improved measurement of electron antineutrino disappearance at Daya Bay, Chin. Phys. C 37 (2013) 011001 [arXiv:1210.6327] [INSPIRE].

    Google Scholar 

  3. RENO collaboration, J. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].

    Article  ADS  Google Scholar 

  4. H. Minakata and H. Nunokawa, Exploring neutrino mixing with low-energy superbeams, JHEP 10 (2001) 001 [hep-ph/0108085] [INSPIRE].

    Article  ADS  Google Scholar 

  5. V. Barger, D. Marfatia and K. Whisnant, Breaking eight fold degeneracies in neutrino CP-violation, mixing and mass hierarchy, Phys. Rev. D 65 (2002) 073023 [hep-ph/0112119] [INSPIRE].

    ADS  Google Scholar 

  6. P. Huber, M. Lindner and W. Winter, Superbeams versus neutrino factories, Nucl. Phys. B 645 (2002) 3 [hep-ph/0204352] [INSPIRE].

    Article  ADS  Google Scholar 

  7. H. Minakata, H. Nunokawa and S.J. Parke, The complementarity of eastern and western hemisphere long baseline neutrino oscillation experiments, Phys. Rev. D 68 (2003) 013010 [hep-ph/0301210] [INSPIRE].

    ADS  Google Scholar 

  8. M. Blennow and T. Schwetz, Identifying the neutrino mass ordering with INO and NOvA, JHEP 08 (2012) 058 [Erratum ibid. 11 (2012) 098] [arXiv:1203.3388] [INSPIRE].

  9. S. Dusini et al., CP violation and mass hierarchy at medium baselines in the large θ 13 era, arXiv:1209.5010 [INSPIRE].

  10. VLBL Study Group H2B-1 collaboration, H.-S. Chen et al., Prospect of a very long baseline neutrino oscillation experiment: HIPA to Beijing, hep-ph/0104266 [INSPIRE].

  11. M. Aoki et al., Prospects of very long baseline neutrino oscillation experiments with the KEK/JAERI high intensity proton accelerator, Phys. Rev. D 67 (2003) 093004 [hep-ph/0112338] [INSPIRE].

    ADS  Google Scholar 

  12. M. Ishitsuka, T. Kajita, H. Minakata and H. Nunokawa, Resolving neutrino mass hierarchy and CP degeneracy by two identical detectors with different baselines, Phys. Rev. D 72 (2005) 033003 [hep-ph/0504026] [INSPIRE].

    ADS  Google Scholar 

  13. K. Hagiwara, N. Okamura and K.-I. Senda, Solving the neutrino parameter degeneracy by measuring the T2K off-axis beam in Korea, Phys. Lett. B 637 (2006) 266 [Erratum ibid. B 641 (2006) 491] [hep-ph/0504061] [INSPIRE].

  14. K. Hagiwara, N. Okamura and K.-I. Senda, Physics potential of T2KK: an extension of the T2K neutrino oscillation experiment with a far detector in Korea, Phys. Rev. D 76 (2007) 093002 [hep-ph/0607255] [INSPIRE].

    ADS  Google Scholar 

  15. T. Kajita, H. Minakata, S. Nakayama and H. Nunokawa, Resolving eight-fold neutrino parameter degeneracy by two identical detectors with different baselines, Phys. Rev. D 75 (2007) 013006 [hep-ph/0609286] [INSPIRE].

    ADS  Google Scholar 

  16. K. Hagiwara and N. Okamura, Solving the degeneracy of the lepton-flavor mixing angle θ ATM by the T2KK two detector neutrino oscillation experiment, JHEP 01 (2008) 022 [hep-ph/0611058] [INSPIRE].

    Article  ADS  Google Scholar 

  17. K. Hagiwara and N. Okamura, Re-evaluation of the T2KK physics potential with simulations including backgrounds, JHEP 07 (2009) 031 [arXiv:0901.1517] [INSPIRE].

    Article  ADS  Google Scholar 

  18. K. Hagiwara, T. Kiwanami, N. Okamura and K.-I. Senda, Physics potential of neutrino oscillation experiment with a far detector in Oki Island along the T2K baseline, arXiv:1209.2763 [INSPIRE].

  19. S. Palomares-Ruiz and S. Petcov, Three-neutrino oscillations of atmospheric neutrinos, θ 13 , neutrino mass hierarchy and iron magnetized detectors, Nucl. Phys. B 712 (2005) 392 [hep-ph/0406096] [INSPIRE].

    Article  ADS  Google Scholar 

  20. R. Gandhi, P. Ghoshal, S. Goswami, P. Mehta and S. Uma Sankar, Probing the ν mass hierarchy via atmospheric ν μ + \( {{\overline{\nu}}_{\mu }} \) survival rates in megaton water Cherenkov detectors, hep-ph/0506145 [INSPIRE].

  21. S. Petcov and T. Schwetz, Determining the neutrino mass hierarchy with atmospheric neutrinos, Nucl. Phys. B 740 (2006) 1 [hep-ph/0511277] [INSPIRE].

    Article  ADS  Google Scholar 

  22. A.S. Dighe and A.Y. Smirnov, Identifying the neutrino mass spectrum from the neutrino burst from a supernova, Phys. Rev. D 62 (2000) 033007 [hep-ph/9907423] [INSPIRE].

    ADS  Google Scholar 

  23. H. Minakata and H. Nunokawa, Inverted hierarchy of neutrino masses disfavored by supernova 1987A, Phys. Lett. B 504 (2001) 301 [hep-ph/0010240] [INSPIRE].

    ADS  Google Scholar 

  24. V. Barger, D. Marfatia and B. Wood, Supernova 1987A did not test the neutrino mass hierarchy, Phys. Lett. B 532 (2002) 19 [hep-ph/0202158] [INSPIRE].

    ADS  Google Scholar 

  25. C. Lunardini and A.Y. Smirnov, Probing the neutrino mass hierarchy and the 13 mixing with supernovae, JCAP 06 (2003) 009 [hep-ph/0302033] [INSPIRE].

    Article  ADS  Google Scholar 

  26. A.S. Dighe, M.T. Keil and G.G. Raffelt, Detecting the neutrino mass hierarchy with a supernova at IceCube, JCAP 06 (2003) 005 [hep-ph/0303210] [INSPIRE].

    Article  ADS  Google Scholar 

  27. A.S. Dighe, M.T. Keil and G.G. Raffelt, Identifying earth matter effects on supernova neutrinos at a single detector, JCAP 06 (2003) 006 [hep-ph/0304150] [INSPIRE].

    Article  ADS  Google Scholar 

  28. V. Barger, P. Huber and D. Marfatia, Supernova neutrinos can tell us the neutrino mass hierarchy independently of flux models, Phys. Lett. B 617 (2005) 167 [hep-ph/0501184] [INSPIRE].

    ADS  Google Scholar 

  29. S.M. Bilenky, C. Giunti, W. Grimus, B. Kayser and S. Petcov, Constraints from neutrino oscillation experiments on the effective Majorana mass in neutrinoless double beta decay, Phys. Lett. B 465 (1999) 193 [hep-ph/9907234] [INSPIRE].

    ADS  Google Scholar 

  30. H. Klapdor-Kleingrothaus, H. Pas and A. Smirnov, Neutrino mass spectrum and neutrinoless double beta decay, Phys. Rev. D 63 (2001) 073005 [hep-ph/0003219] [INSPIRE].

    ADS  Google Scholar 

  31. S.M. Bilenky, S. Pascoli and S. Petcov, Majorana neutrinos, neutrino mass spectrum, CP-violation and neutrinoless double beta decay. 1. The three neutrino mixing case, Phys. Rev. D 64 (2001) 053010 [hep-ph/0102265] [INSPIRE].

    ADS  Google Scholar 

  32. S. Pascoli, S. Petcov and L. Wolfenstein, Searching for the CP-violation associated with Majorana neutrinos, Phys. Lett. B 524 (2002) 319 [hep-ph/0110287] [INSPIRE].

    ADS  Google Scholar 

  33. F. Feruglio, A. Strumia and F. Vissani, Neutrino oscillations and signals in β and 0ν2β experiments, Nucl. Phys. B 637 (2002) 345 [Addendum ibid. B 659 (2003) 359] [hep-ph/0201291] [INSPIRE].

  34. S. Pascoli and S. Petcov, The SNO solar neutrino data, neutrinoless double beta decay and neutrino mass spectrum, Phys. Lett. B 544 (2002) 239 [hep-ph/0205022] [INSPIRE].

    ADS  Google Scholar 

  35. S. Pascoli, S. Petcov and W. Rodejohann, On the neutrino mass spectrum and neutrinoless double beta decay, Phys. Lett. B 558 (2003) 141 [hep-ph/0212113] [INSPIRE].

    ADS  Google Scholar 

  36. S. Petcov, Theoretical prospects of neutrinoless double beta decay, Phys. Scripta T 121 (2005) 94 [hep-ph/0504166] [INSPIRE].

    Article  ADS  Google Scholar 

  37. A. Dueck, W. Rodejohann and K. Zuber, Neutrinoless double beta decay, the inverted hierarchy and precision determination of θ 12, Phys. Rev. D 83 (2011) 113010 [arXiv:1103.4152] [INSPIRE].

    ADS  Google Scholar 

  38. S. Petcov and M. Piai, The LMA MSW solution of the solar neutrino problem, inverted neutrino mass hierarchy and reactor neutrino experiments, Phys. Lett. B 533 (2002) 94 [hep-ph/0112074] [INSPIRE].

    ADS  Google Scholar 

  39. S. Choubey, S. Petcov and M. Piai, Precision neutrino oscillation physics with an intermediate baseline reactor neutrino experiment, Phys. Rev. D 68 (2003) 113006 [hep-ph/0306017] [INSPIRE].

    ADS  Google Scholar 

  40. J. Learned, S.T. Dye, S. Pakvasa and R.C. Svoboda, Determination of neutrino mass hierarchy and θ 13 with a remote detector of reactor antineutrinos, Phys. Rev. D 78 (2008) 071302 [hep-ex/0612022] [INSPIRE].

    ADS  Google Scholar 

  41. L. Zhan, Y. Wang, J. Cao and L. Wen, Determination of the neutrino mass hierarchy at an intermediate baseline, Phys. Rev. D 78 (2008) 111103 [arXiv:0807.3203] [INSPIRE].

    ADS  Google Scholar 

  42. M. Batygov et al., Prospects of neutrino oscillation measurements in the detection of reactor antineutrinos with a medium-baseline experiment, arXiv:0810.2580 [INSPIRE].

  43. L. Zhan, Y. Wang, J. Cao and L. Wen, Experimental requirements to determine the neutrino mass hierarchy using reactor neutrinos, Phys. Rev. D 79 (2009) 073007 [arXiv:0901.2976] [INSPIRE].

    ADS  Google Scholar 

  44. P. Ghoshal and S. Petcov, Neutrino mass hierarchy determination using reactor antineutrinos, JHEP 03 (2011) 058 [arXiv:1011.1646] [INSPIRE].

    Article  ADS  Google Scholar 

  45. E. Ciuffoli, J. Evslin and X. Zhang, The neutrino mass hierarchy at reactor experiments now that θ 13 is large, JHEP 03 (2013) 016 [arXiv:1208.1991] [INSPIRE].

    Article  ADS  Google Scholar 

  46. E. Ciuffoli, J. Evslin and X. Zhang, Mass hierarchy determination using neutrinos from multiple reactors, JHEP 12 (2012) 004 [arXiv:1209.2227] [INSPIRE].

    Article  ADS  Google Scholar 

  47. X. Qian et al., Mass hierarchy resolution in reactor anti-neutrino experiments: parameter degeneracies and detector energy response, Phys. Rev. D 87 (2013) 033005 [arXiv:1208.1551] [INSPIRE].

    ADS  Google Scholar 

  48. P. Ghoshal and S. Petcov, Addendum: neutrino mass hierarchy determination using reactor antineutrinos, JHEP 09 (2012) 115 [arXiv:1208.6473] [INSPIRE].

    Article  ADS  Google Scholar 

  49. X. Qian et al., Statistical evaluation of experimental determinations of neutrino mass hierarchy, Phys. Rev. D 86 (2012) 113011 [arXiv:1210.3651] [INSPIRE].

    ADS  Google Scholar 

  50. C. Bemporad, G. Gratta and P. Vogel, Reactor based neutrino oscillation experiments, Rev. Mod. Phys. 74 (2002) 297 [hep-ph/0107277] [INSPIRE].

    Article  ADS  Google Scholar 

  51. P. Vogel and J. Engel, Neutrino electromagnetic form-factors, Phys. Rev. D 39 (1989) 3378 [INSPIRE].

    ADS  Google Scholar 

  52. P. Huber and T. Schwetz, Precision spectroscopy with reactor anti-neutrinos, Phys. Rev. D 70 (2004) 053011 [hep-ph/0407026] [INSPIRE].

    ADS  Google Scholar 

  53. K. Hagiwara, N. Okamura and K.-I. Senda, The earth matter effects in neutrino oscillation experiments from Tokai to Kamioka and Korea, JHEP 09 (2011) 082 [arXiv:1107.5857] [INSPIRE].

    Article  ADS  Google Scholar 

  54. DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].

    Article  ADS  Google Scholar 

  55. P. Vogel and J.F. Beacom, Angular distribution of neutron inverse beta decay, \( {{\overline{\nu}}_e} \) + pe + + ν, Phys. Rev. D 60 (1999) 053003 [hep-ph/9903554] [INSPIRE].

    ADS  Google Scholar 

  56. X. Qian and Y. Wang, private communication.

  57. Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  58. J. Cao, Reactor neutrino results, talk at ICHEP2012, Melbourne Australia (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaro Takaesu.

Additional information

ArXiv ePrint: 1210.8141

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, SF., Hagiwara, K., Okamura, N. et al. Determination of mass hierarchy with medium baseline reactor neutrino experiments. J. High Energ. Phys. 2013, 131 (2013). https://doi.org/10.1007/JHEP05(2013)131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2013)131

Keywords

Navigation