Skip to main content
Log in

Microstates at the boundary of AdS

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The bound states of the D1D5 brane system have a known gravitational description: flat asymptotics, an anti-de Sitter region, and a ‘cap’ ending the AdS region. We construct perturbations that correspond to the action of chiral algebra generators on Ramond ground states of D1D5 branes. Abstract arguments in the literature suggest that the perturbation should be pure gauge in the AdS region; our perturbation indeed has this structure, with the nontrivial deformation of the geometry occurring at the ‘neck’ between the AdS region and asymptotic infinity. This ‘non-gauge’ deformation is needed to provide the nonzero energy and momentum carried by the perturbation. We also suggest implications this structure may have for the majority of microstates which live at the cap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. S. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].

  3. J.D. Bekenstein, A universal upper bound on the entropy to energy ratio for bounded systems, Phys. Rev. D 23 (1981) 287 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. W. Israel, Event horizons in static vacuum space-times, Phys. Rev. 164 (1967) 1776 [INSPIRE].

    Article  ADS  Google Scholar 

  5. B. Carter, Axisymmetric black hole has only two degrees of freedom, Phys. Rev. Lett. 26 (1971) 331 [INSPIRE].

    Article  ADS  Google Scholar 

  6. R.H. Price, Nonspherical perturbations of relativistic gravitational collapse. 1. Scalar and gravitational perturbations, Phys. Rev. D 5 (1972) 2419 [INSPIRE].

    ADS  Google Scholar 

  7. R.H. Price, Nonspherical perturbations of relativistic gravitational collapse. II. Integer-spin, zero-rest-mass fields, Phys. Rev. D 5 (1972) 2439 [INSPIRE].

    ADS  Google Scholar 

  8. D. Robinson, Uniqueness of the Kerr black hole, Phys. Rev. Lett. 34 (1975) 905 [INSPIRE].

    Article  ADS  Google Scholar 

  9. M. Heusler, Stationary black holes: Uniqueness and beyond, Living Rev. Rel. 1 (1998) 6, http://www.livingreviews.org/lrr-1998-6.

  10. S. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14 (1976) 2460 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. S.D. Mathur, The Information paradox: a pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. S.D. Mathur, What the information paradox is not, arXiv:1108.0302 [INSPIRE].

  13. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [INSPIRE].

  14. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  15. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  16. J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. A. Strominger, Black hole entropy from near horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. S. Carlip, Black hole entropy from conformal field theory in any dimension, Phys. Rev. Lett. 82 (1999) 2828 [hep-th/9812013] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. S. Carlip, Entropy from conformal field theory at Killing horizons, Class. Quant. Grav. 16 (1999) 3327 [gr-qc/9906126] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. S. Carlip, Black hole entropy from horizon conformal field theory, Nucl. Phys. Proc. Suppl. 88 (2000) 10 [gr-qc/9912118] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  22. C.G. Callan and J.M. Maldacena, D-brane approach to black hole quantum mechanics, Nucl. Phys. B 472 (1996) 591 [hep-th/9602043] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. O. Lunin and S.D. Mathur, Metric of the multiply wound rotating string, Nucl. Phys. B 610 (2001) 49 [hep-th/0105136] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. O. Lunin, J.M. Maldacena and L. Maoz, Gravity solutions for the D1 − D5 system with angular momentum, hep-th/0212210 [INSPIRE].

  26. I. Kanitscheider, K. Skenderis and M. Taylor, Fuzzballs with internal excitations, JHEP 06 (2007) 056 [arXiv:0704.0690] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept. 467 (2008) 117 [arXiv:0804.0552] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. I. Bena and N.P. Warner, One ring to rule them all … and in the darkness bind them?, Adv. Theor. Math. Phys. 9 (2005) 667 [hep-th/0408106] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  29. I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP 06 (2006) 007 [hep-th/0505167] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. A. Saxena, G. Potvin, S. Giusto and A.W. Peet, Smooth geometries with four charges in four dimensions, JHEP 04 (2006) 010 [hep-th/0509214] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys. 755 (2008) 1 [hep-th/0701216] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. S.R. Das and G. Mandal, Microstate dependence of scattering from the D1 − D5 system, JHEP 04 (2009) 036 [arXiv:0812.1358] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. V. Jejjala, O. Madden, S.F. Ross and G. Titchener, Non-supersymmetric smooth geometries and D1 − D5 − P bound states, Phys. Rev. D 71 (2005) 124030 [hep-th/0504181] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. B.D. Chowdhury and S.D. Mathur, Radiation from the non-extremal fuzzball, Class. Quant. Grav. 25 (2008) 135005 [arXiv:0711.4817] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. S.G. Avery, B.D. Chowdhury and S.D. Mathur, Emission from the D1D5 CFT, JHEP 10 (2009) 065 [arXiv:0906.2015] [INSPIRE].

    Article  ADS  Google Scholar 

  37. S.D. Mathur, Fuzzballs and the information paradox: a summary and conjectures, arXiv:0810.4525 [INSPIRE].

  38. V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, The library of Babel: on the origin of gravitational thermodynamics, JHEP 12 (2005) 006 [hep-th/0508023] [INSPIRE].

    ADS  Google Scholar 

  39. V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, Entropy of near-extremal black holes in AdS 5, JHEP 05 (2008) 067 [arXiv:0707.3601] [INSPIRE].

    Article  ADS  Google Scholar 

  40. J. Simon, Extremal black holes, holography and coarse graining, Int. J. Mod. Phys. A 26 (2011) 1903 [arXiv:1106.0116] [INSPIRE].

    ADS  Google Scholar 

  41. I. Bena, N. Bobev, S. Giusto, C. Ruef and N.P. Warner, An infinite-dimensional family of black-hole microstate geometries, JHEP 03 (2011) 022 [Erratum ibid. 1104 (2011) 059] [arXiv:1006.3497] [INSPIRE].

  42. I. Bena, J. de Boer, M. Shigemori and N.P. Warner, Double, double supertube bubble, JHEP 10 (2011) 116 [arXiv:1107.2650] [INSPIRE].

    Article  ADS  Google Scholar 

  43. I. Bena, B.D. Chowdhury, J. de Boer, S. El-Showk and M. Shigemori, Moulting black holes, JHEP 03 (2012) 094 [arXiv:1108.0411] [INSPIRE].

    Article  ADS  Google Scholar 

  44. S. Giusto, R. Russo and D. Turton, New D1 − D5 − P geometries from string amplitudes, JHEP 11 (2011) 062 [arXiv:1108.6331] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. S. Giusto, J.F. Morales and R. Russo, D1D5 microstate geometries from string amplitudes, JHEP 03 (2010) 130 [arXiv:0912.2270] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. W. Black, R. Russo and D. Turton, The supergravity fields for a D-brane with a travelling wave from string amplitudes, Phys. Lett. B 694 (2010) 246 [arXiv:1007.2856] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  47. S.D. Mathur, A. Saxena and Y.K. Srivastava, Constructinghairfor the three charge hole, Nucl. Phys. B 680 (2004) 415 [hep-th/0311092] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. F. Larsen and F. Wilczek, Internal structure of black holes, Phys. Lett. B 375 (1996) 37 [hep-th/9511064] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  49. M. Cvetič and A.A. Tseytlin, Solitonic strings and BPS saturated dyonic black holes, Phys. Rev. D 53 (1996) 5619 [Erratum ibid. D 55 (1997) 3907] [hep-th/9512031] [INSPIRE].

  50. G.T. Horowitz and D. Marolf, Counting states of black strings with traveling waves, Phys. Rev. D 55 (1997) 835 [hep-th/9605224] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  51. G.T. Horowitz and D. Marolf, Counting states of black strings with traveling waves. 2., Phys. Rev. D 55 (1997) 846 [hep-th/9606113] [INSPIRE].

    ADS  Google Scholar 

  52. N. Kaloper, R.C. Myers and H. Roussel, Wavy strings: black or bright?, Phys. Rev. D 55 (1997) 7625 [hep-th/9612248] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  53. G.T. Horowitz and H.-s. Yang, Black strings and classical hair, Phys. Rev. D 55 (1997) 7618 [hep-th/9701077] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  54. N. Banerjee, I. Mandal and A. Sen, Black hole hair removal, JHEP 07 (2009) 091 [arXiv:0901.0359] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. D.P. Jatkar, A. Sen and Y.K. Srivastava, Black hole hair removal: non-linear analysis, JHEP 02 (2010) 038 [arXiv:0907.0593] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. D. Garfinkle and T. Vachaspati, Cosmic string traveling waves, Phys. Rev. D 42 (1990) 1960 [INSPIRE].

    ADS  Google Scholar 

  57. C.G. Callan, J.M. Maldacena and A.W. Peet, Extremal black holes as fundamental strings, Nucl. Phys. B 475 (1996) 645 [hep-th/9510134] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. A. Dabholkar, J.P. Gauntlett, J.A. Harvey and D. Waldram, Strings as solitons and black holes as strings, Nucl. Phys. B 474 (1996) 85 [hep-th/9511053] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. O. Lunin and S.D. Mathur, AdS/CFT duality and the black hole information paradox, Nucl. Phys. B 623 (2002) 342 [hep-th/0109154] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. S.D. Mathur, The fuzzball proposal for black holes: an elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. M. Cvetič and D. Youm, General rotating five-dimensional black holes of toroidally compactified heterotic string, Nucl. Phys. B 476 (1996) 118 [hep-th/9603100] [INSPIRE].

    Article  ADS  Google Scholar 

  62. V. Balasubramanian, J. de Boer, E. Keski-Vakkuri and S.F. Ross, Supersymmetric conical defects: towards a string theoretic description of black hole formation, Phys. Rev. D 64 (2001) 064011 [hep-th/0011217] [INSPIRE].

    ADS  Google Scholar 

  63. J.M. Maldacena and L. Maoz, Desingularization by rotation, JHEP 12 (2002) 055 [hep-th/0012025] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. O. Lunin, S.D. Mathur and A. Saxena, What is the gravity dual of a chiral primary?, Nucl. Phys. B 655 (2003) 185 [hep-th/0211292] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. A. Schwimmer and N. Seiberg, Comments on the N = 2, N = 3, N = 4 superconformal algebras in two-dimensions, Phys. Lett. B 184 (1987) 191 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  66. J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  67. S. Deger, A. Kaya, E. Sezgin and P. Sundell, Spectrum of D = 6, N = 4b supergravity on AdS 3 × S 3, Nucl. Phys. B 536 (1998) 110 [hep-th/9804166] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  68. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  69. J. Hansen and P. Kraus, Generating charge from diffeomorphisms, JHEP 12 (2006) 009 [hep-th/0606230] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  70. P. Kraus and F. Larsen, Partition functions and elliptic genera from supergravity, JHEP 01 (2007) 002 [hep-th/0607138] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  71. K. Skenderis and M. Taylor, Fuzzball solutions and D1 − D5 microstates, Phys. Rev. Lett. 98 (2007) 071601 [hep-th/0609154] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  72. I. Kanitscheider, K. Skenderis and M. Taylor, Holographic anatomy of fuzzballs, JHEP 04 (2007) 023 [hep-th/0611171] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  73. P.A. Dirac, A remarkable respresentation of the 3+2 de Sitter group, J. Math. Phys. 4 (1963) 901 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  74. M. Flato and C. Fronsdal, One massless particle equals two Dirac singletons: elementary particles in a curved space. 6., Lett. Math. Phys. 2 (1978) 421 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  75. M. Günaydin, G. Sierra and P. Townsend, The unitary supermultiplets of D = 3 anti-de Sitter and D = 2 conformal superalgebras, Nucl. Phys. B 274 (1986) 429 [INSPIRE].

    Article  ADS  Google Scholar 

  76. J. de Boer, Six-dimensional supergravity on S 3 × AdS 3 and 2D conformal field theory, Nucl. Phys. B 548 (1999) 139 [hep-th/9806104] [INSPIRE].

    Article  ADS  Google Scholar 

  77. J.M. Maldacena, G.W. Moore and N. Seiberg, D-brane charges in five-brane backgrounds, JHEP 10 (2001) 005 [hep-th/0108152] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  78. N. Seiberg and E. Witten, The D1/D5 system and singular CFT, JHEP 04 (1999) 017 [hep-th/9903224] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  79. F. Larsen and E.J. Martinec, U(1) charges and moduli in the D1-D5 system, JHEP 06 (1999) 019 [hep-th/9905064] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  80. M. Sheikh-Jabbari and H. Yavartanoo, EVH black holes, AdS 3 throats and EVH/CFT proposal, JHEP 10 (2011) 013 [arXiv:1107.5705] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  81. J. de Boer, M. Johnstone, M. Sheikh-Jabbari and J. Simon, Emergent IR dual 2d CFTs in charged AdS 5 black holes, arXiv:1112.4664 [INSPIRE].

  82. J. de Boer, Large-N elliptic genus and AdS/CFT correspondence, JHEP 05 (1999) 017 [hep-th/9812240] [INSPIRE].

    Article  Google Scholar 

  83. S. Murthy and S. Nawata, Which AdS 3 configurations contribute to the SCFT2 elliptic genus?, arXiv:1112.4844 [INSPIRE].

  84. S.D. Mathur, Gravity on AdS 3 and flat connections in the boundary CFT, hep-th/0101118 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Turton.

Additional information

ArXiv ePrint: 1112.6413

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathur, S.D., Turton, D. Microstates at the boundary of AdS. J. High Energ. Phys. 2012, 14 (2012). https://doi.org/10.1007/JHEP05(2012)014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2012)014

Keywords

Navigation