Skip to main content
Log in

Beyond logarithmic corrections to Cardy formula

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

As shown by Cardy [1], modular invariance of the partition function of a given unitary non-singular 2d CFT with left and right central charges c L and c R , implies that the density of states in a microcanonical ensemble, at excitations Δ and \( \bar{\Delta } \) and in the saddle point approximation, is \( {\rho_0}\left( {\Delta, \bar{\Delta };{c_L},{c_R}} \right) = {c_L}\exp \left( {2\pi \sqrt {{{{{{c_L}\Delta }} \left/ {6} \right.}}} } \right) \cdot {c_R}\exp \left( {2\pi \sqrt {{{{{{c_R}\bar{\Delta }}} \left/ {6} \right.}}} } \right) \). In this paper, we extend Cardy’s analysis and show that in the saddle point approximation and up to contributions which are exponentially suppressed compared to the leading Cardy’s result, the density of states takes the form \( \rho \left( {\Delta, \bar{\Delta };{c_L},{c_R}} \right) = f\left( {{c_L}\Delta } \right)f\left( {{c_R}\bar{\Delta }} \right){\rho_0}\left( {\Delta, \bar{\Delta };{c_L},{c_R}} \right) \), for a function f(x) which we specify. In particular, we show that (i) \( \rho \left( {\Delta, \bar{\Delta };{c_L},{c_R}} \right) \) is the product of contributions of left and right movers and hence, to this approximation, the partition function of any modular invariant, non-singular unitary 2d CFT is holomorphically factorizable and (ii) \( {{{\rho \left( {\Delta, \bar{\Delta };{c_L},{c_R}} \right)}} \left/ {{\left( {{c_L}{c_R}} \right)}} \right.} \) is only a function of c L Δ and \( {c_R}\bar{\Delta } \). In addition, treating \( \rho \left( {\Delta, \bar{\Delta };{c_L},{c_R}} \right) \) as the density of states of a microcanonical ensemble, we compute the entropy of the system in the canonical counterpart and show that the function f(x) is such that the canonical entropy, up to exponentially suppressed contributions, is simply given by the Cardy’s result \( \ln {\rho_0}\left( {\Delta, \bar{\Delta };{c_L},{c_R}} \right) \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.L. Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys. B 270 (1986) 186 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. P. di Francesco, P. Mathieu and D. Sénéchal, Conformal field theory, Springer-Verlag, New York U.S.A. (1997).

    Book  MATH  Google Scholar 

  4. S.V. Ketov, Conformal field theory, World Scientific, Singapore (1995) [SPIRES].

    Book  MATH  Google Scholar 

  5. P.H. Ginsparg, Applied conformal field theory, hep-th/9108028 [SPIRES].

  6. M.R. Gaberdiel, An introduction to conformal field theory, Rept. Prog. Phys. 63 (2000) 607 [hep-th/9910156] [SPIRES].

    Article  ADS  Google Scholar 

  7. G.B. Segal, The definition of conformal field theory, in London Mathematical Society Lecture Note Series. Volume 308: Topology, geometry and quantum field theory, Cambridge University Press, Cambridge U.K. (2004).

    Google Scholar 

  8. J. Polchinski, String theory. Volume 1: An introduction to the bosonic string, Cambridge University Press, Cambridge U.K. (1998) [SPIRES].

    Google Scholar 

  9. S. Hellerman, A universal inequality for CFT and quantum gravity, arXiv:0902.2790 [SPIRES].

  10. E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359 [SPIRES].

  11. S. Carlip, What we don’t know about BTZ black hole entropy, Class. Quant. Grav. 15 (1998) 3609 [hep-th/9806026] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. S. Carlip, Logarithmic corrections to black hole entropy from the Cardy formula, Class. Quant. Grav. 17 (2000) 4175 [gr-qc/0005017] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. R. Dijkgraaf, J.M. Maldacena, G.W. Moore and E.P. Verlinde, A black hole farey tail, hep-th/0005003 [SPIRES].

  14. J. Manschot and G.W. Moore, A modern fareytail, Commun. Num. Theor. Phys. 4 (2010) 103 [arXiv:0712.0573] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  15. A. Maloney and E. Witten, Quantum gravity partition functions in three dimensions, JHEP 02 (2010) 029 [arXiv:0712.0155] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products, Seventh Edition, A. Jeffrey and D. Zwillinger eds., Academic Press (2007).

  17. D. Kutasov and N. Seiberg, Number of degrees of freedom, density of states and tachyons in string theory and CFT, Nucl. Phys. B 358 (1991) 600 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. N. Seiberg, Notes on quantum Liouville theory and quantum gravity, Prog. Theor. Phys. Suppl. 102 (1990) 319 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. F. Correa, C. Martinez and R. Troncoso, Scalar solitons and the microscopic entropy of hairy black holes in three dimensions, JHEP 01 (2011) 034 [arXiv:1010.1259] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. M. Bañados, Embeddings of the Virasoro algebra and black hole entropy, Phys. Rev. Lett. 82 (1999) 2030 [hep-th/9811162] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. L. Borisov, M.B. Halpern and C. Schweigert, Systematic approach to cyclic orbifolds, Int. J. Mod. Phys. A 13 (1998) 125 [hep-th/9701061] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  23. V. Jejjala and S. Nampuri, Cardy and Kerr, JHEP 02 (2010) 088 [arXiv:0909.1110] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. F. Loran and H. Soltanpanahi, 5D extremal rotating black holes and CFT duals, Class. Quant. Grav. 26 (2009) 155019 [arXiv:0901.1595] [SPIRES].

    Article  ADS  Google Scholar 

  25. A. Strominger, Black hole entropy from near-horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2+1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [SPIRES].

    ADS  Google Scholar 

  28. J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. A. Sen, Black hole entropy function, attractors and precision counting of microstates, Gen. Rel. Grav. 40 (2008) 2249 [arXiv:0708.1270] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  30. A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity, JHEP 09 (2005) 038 [hep-th/0506177] [SPIRES].

    Article  ADS  Google Scholar 

  31. V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  32. D. Birmingham and S. Sen, An exact black hole entropy bound, Phys. Rev. D 63 (2001) 047501 [hep-th/0008051] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  33. D. Birmingham, I. Sachs and S. Sen, Exact results for the BTZ black hole, Int. J. Mod. Phys. D 10 (2001) 833 [hep-th/0102155] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  34. N. Seiberg and E. Witten, The D1/D5 system and singular CFT, JHEP 04 (1999) 017 [hep-th/9903224] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. H. Saida and J. Soda, Statistical entropy of BTZ black hole in higher curvature gravity, Phys. Lett. B 471 (2000) 358 [gr-qc/9909061] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  36. N. Banerjee, D.P. Jatkar and A. Sen, Asymptotic expansion of the \( \mathcal{N} = 4 \) dyon degeneracy, JHEP 05 (2009) 121 [arXiv:0810.3472] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. S. Murthy and B. Pioline, A farey tale for \( \mathcal{N} = 4 \) dyons, JHEP 09 (2009) 022 [arXiv:0904.4253] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Sheikh-Jabbari.

Additional information

ArXiv ePrint: 1010.3561

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loran, F., Sheikh-Jabbari, M.M. & Vincon, M. Beyond logarithmic corrections to Cardy formula. J. High Energ. Phys. 2011, 110 (2011). https://doi.org/10.1007/JHEP01(2011)110

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2011)110

Keywords

Navigation