Skip to main content
Log in

Strain energy release maximization model for recrystallization textures

  • Published:
Metals and Materials Aims and scope Submit manuscript

Abstract

In 1995, the author advanced a model for the evolution of recrystallization texture. In the model the absolute maximum internal stress direction due to dislocations generated during deformation or fabrication in the fabricated material is aligned with the minimum Young’s modulus direction in recrystallized grains, whereby the energy release during recrystallization can be maximized. This comes from the fact that material concerned does not change macroscopically its shape and volume during recrystallization, and so the recrystallization is a displacement controlled process. This strain energy release maximization model originates from the presumption that the stored energy due to dislocations is the major driving force for the recrystallization. The absolute maximum internal stress direction may be obtained from the operating slip systems, which are related to the deformation mode and texture. If one slip system is activated, the absolute maximum normal stress direction is parallel to the slip direction, or the Burgers vector direction. If more than one slip system is activated, the absolute maximum normal stress direction can be determined by the vector sum of related slip directions, taking their contribution to slip into account. This paper discusses recrystallization textures of plastically deformed and electrodeposited metals, based on the model. A brief comment was made also on the growth textures of axisymmetrically deformed copper and silver and electrodeposited silver and Fe-Ni alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. G. Burgers and P. C. Louwerse,Z Metallkd.67, 605 (1931).

    CAS  Google Scholar 

  2. C. S. Barrett,Trans. AIME 137, 128 (1940).

    Google Scholar 

  3. R. D. Doherty, A. D. Hughes, F. J. Humphreys, J. J. Jonas, D. Juul Jensen, M. E. Kassner, W. E. King, T. R. McNelley, H. J. McQueen and A.D. Rollett,Mater. Sci. Eng. A238, 219 (1997).

    CAS  Google Scholar 

  4. F. J. Humphreys and M. Hatherly,Recrystallization and Relat-ed Annealing Phenomena, Pergamon (1995).

  5. D. N. Lee,Scripte metall. mater. 32, 1689 (1995).

    Article  CAS  Google Scholar 

  6. A. P. Sutton and R.W. Ballufi, inInterfaces in Crystalline Materials, p. 115, Clarendon Press, Oxford (1996).

    Google Scholar 

  7. M. Zehetbauer,Acta metall. mater. 41, 589 (1993).

    Article  CAS  Google Scholar 

  8. D. N. Lee, Y. H. Chung, and M. C. Shin,Scripta metall. 17, 339 (1983).

    Article  CAS  Google Scholar 

  9. H. Inoue, N. Nakazu and H. Yamamoto, inProc. ICOTOM 6 (ed., S. Nagashima), p. 591, The Iron and Steel Inst. of Japan, Tokyo (1981).

    Google Scholar 

  10. W. R. Hubband Jr,Trans. AIME 77, 581 (1950).

    Google Scholar 

  11. H.-J. Shin, H.-T. Jeong, and D. N. Lee,Mater. Sci. Eng. A, in press.

  12. W. A. Backofen,Trans. AIME 191, 250 (1951).

    Google Scholar 

  13. G. Bassi,Trans. AIME 191, 533 (1951).

    Google Scholar 

  14. J. F. Butler, Jr., M. Blicharski and H. Hu,Texture Microstruct.14-18, 611 (1991).

    Article  Google Scholar 

  15. D. N. Lee,Texture Microstruct.26-37, 361 (1996).

    Article  Google Scholar 

  16. G. I. Taylor,J. Inst. Metals 62, 307 (1938).

    Google Scholar 

  17. J. F. W. Bishop and R. Hill,Phil. Mag. 42, 1298 (1951).

    CAS  MathSciNet  MATH  Google Scholar 

  18. R. E. Bauer, H. Mecking, and K. Lücke,Mater. Sci. Eng. 27, 163 (1977).

    Article  CAS  Google Scholar 

  19. H. Honneff and H. Mecking.Proc. ICOTOM 51, 265 (1978).

    Google Scholar 

  20. P. Van Houtte,Proc. ICOTOM 61, 428 (1981).

    Google Scholar 

  21. B. Liebman, K. Lücke and G. Masing,Z Metallkd.47, 57 (1956).

    Google Scholar 

  22. E. Nes and H.E. Vatne,Z Metallkd.87, 6 (1996).

    Google Scholar 

  23. C. T. Necker, R. D. Doherty and A. D. Rolett,Texture Microstruct.14-18, 635 (1991).

    Article  Google Scholar 

  24. M. Blicharski, J. Liu and H. Hu,Acta mater. 43, 3125 (1995).

    Article  CAS  Google Scholar 

  25. D. N. Lee and H.-T. Jeong,Mater. Sci. Eng. A269, 49 (1999).

    Google Scholar 

  26. M. Semchyshen and G.A. Timmons,Trans. AIME 294, 279 (1952).

    Google Scholar 

  27. P. I. Welch and G. J. Davies,Texture Microstruct.6, 21 (1983).

    Article  CAS  Google Scholar 

  28. Y. B. Park, D. N. Lee and G. Gottstein,Acta mater. 46, 3371 (1998).

    Article  CAS  Google Scholar 

  29. Y. B. Park, D. N. Lee and G. Gottstein,Mater. Sci. Eng. A257, 178 (1998).

    CAS  Google Scholar 

  30. G. Wassermann and J. Grewen,Texturen Metallischer Werkstoffe, Springer-Verlag, Berlin (1962).

    Google Scholar 

  31. J. W. Pugh,Trans. AIME 212, 637 (1958).

    CAS  Google Scholar 

  32. S. H. Lee and D. N. Lee,Mater. Sci. Eng. A249, 84 (1998).

    CAS  Google Scholar 

  33. C. G. Dunn,Acta metall. 2, 173 (1954).

    Article  CAS  Google Scholar 

  34. D. Rabbe and K. Lücke,Mater. Sci. Forum 157-162, 597 (1994).

    Article  Google Scholar 

  35. D. N. Lee and H.-T. Jeong,Scripta mater. 38, 1219 (1998).

    Article  CAS  Google Scholar 

  36. D. N. Lee, S. Kang and J. Yang,Plating and Surf. Finishing 82, 76 (Mar. 1995).

    CAS  Google Scholar 

  37. J. Yang and D. N. Lee,Metals and Materials 5, 465 (1999).

    Article  CAS  Google Scholar 

  38. J. H. Choi, S. Kang and D. N. Lee, inProc. ICOTOM 12, p. 298 (1999).

    Google Scholar 

  39. H. S. Nam and D. N. Lee,J. Electrochem. Soc., in press.

  40. I. S. Kim, private communication.

  41. D. N. Lee,Metals and Materials 2, 121 (1996).

    Article  Google Scholar 

  42. Y S. Lee and D. N. Lee, unpublished result.

  43. F. Czerwinski, H. Li, M. Megret and J. A. Szpunar,Scripta metall. mater. 37, 1967 (1997).

    CAS  Google Scholar 

  44. D. N. Lee and K.-H. Hur,Scripta. mater. 40, 1333 (1999).

    Article  CAS  Google Scholar 

  45. D. N. Lee and K.-H. Hur,Texture Microstruct. in press.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium “ ’99 International Symposium on Textures of Materials”, held at Sunchun National University, Sunchun, April 21~22, 1999 under the auspices of The Korean Institute of Metals and Materials and The Research and Development Center for Automobile’s Parts and Materials.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D.N. Strain energy release maximization model for recrystallization textures. Metals and Materials 5, 401–417 (1999). https://doi.org/10.1007/BF03026153

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03026153

Key words

Navigation