Skip to main content
Log in

A thermodynamically consistent model of static and dynamic recrystallization

  • Special Issue
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

We propose a thermodynamically consistent model of static and dynamic recrystallization for metals during and after severe plastic deformations that is capable of predicting the evolution of dislocation density as well as mean grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taylor G.I.: The mechanism of plastic deformation of crystals. Proc. R. Soc. Lond. A145, 362–387 (1934)

    Article  Google Scholar 

  2. Hall E.O.: The deformation and ageing of mild steel. Proc. Phys. Soc. B64, 742–753 (1951)

    Article  Google Scholar 

  3. Petch N.J.: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25–28 (1953)

    Google Scholar 

  4. Segal V.M.: Material processing by simple shear. Mater. Sci. Eng. A197, 157–164 (1995)

    Article  Google Scholar 

  5. Iwahashi Y., Wang J., Horita Z., Nemoto M., Langdon T.G.: Principle of equal channel angular pressing for the processing of ultra-fine grained materials. Scr. Mater. 35, 143–146 (1996)

    Article  Google Scholar 

  6. Kaibyshev A., Shipilova K., Musin F., Motohashi Y.: Continuous dynamic recrystallization in an Al–Li–Mg–Sc alloy during equal-channel angular extrusion. Mater. Sci. Eng. A396, 341–351 (2005)

    Article  Google Scholar 

  7. Mishra A., Richard V., Grégori F., Asaro R.J., Meyers M.A.: Microstructural evolution in copper processed by severe plastic deformation. Mater. Sci. Eng. A410(411), 290–298 (2005)

    Article  Google Scholar 

  8. Hebesbergera T., Stüwea H.P., Vorhauera A., Wetschera F., Pippan R.: Structure of Cu deformed by high pressure torsion. Acta Mater. 53, 393–402 (2005)

    Article  Google Scholar 

  9. Segal V.M., Beyerlein I.J., Tome C.N., Chuvildeev V.N., Kopylov V.I.: Fundamentals and Engineering of Severe Plastic Deformation. Nova Science Publishers Inc., New York (2010)

    Google Scholar 

  10. Le K.C., Kochmann D.M.: A simple model for dynamic recrystallization during severe plastic deformation. Arch. Appl. Mech. 79, 579–586 (2009)

    Article  MATH  Google Scholar 

  11. Onsager L.: Reciprocal relations in irreversible processes. Phys. Rev. 37, 405–426 (1931)

    Article  Google Scholar 

  12. Taylor G.I., Quinney H.: The latent energy remaining in a metal after cold working. Proc. R. Soc. A143, 307–326 (1934)

    Article  Google Scholar 

  13. Hill R.E.: Physical Metallurgy Principles. D. Van Nostrand Company, New York (1973)

    Google Scholar 

  14. Cahn R.W.: Recrystallization of single crystals after plastic bending. J. Inst. Met. 76, 121–143 (1949)

    Google Scholar 

  15. Gilman J.J.: Structure and polygonization of bent zinc monocrystals. Acta Metall. 3, 277–288 (1955)

    Article  Google Scholar 

  16. Le K.C., Nguyen Q.S.: Polygonization as low energy dislocation structure. Continuum Mech. Thermodyn. 22, 291–298 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Le K.C., Nguyen B.D.: Polygonization: theory and comparison with experiments. Int. J. Eng. Sci. 59, 211–218 (2012)

    Article  Google Scholar 

  18. Le K.C., Nguyen B.D.: On bending of single crystal beam with continuously distributed dislocations. Int. J. Plast. 48, 152–167 (2013)

    Article  Google Scholar 

  19. Baker I., Liu L., Mandal D.: The effect of grain-size on the stored energy of cold work as a function of strain for polycrystalline nickel. Scr. Metall. Mater. 32, 167–171 (1995)

    Article  Google Scholar 

  20. Gottstein G.: Physical Foundations of Materials Science. Springer, Berlin (2004)

    Book  Google Scholar 

  21. Berdichevsky V.L.: On thermodynamics of crystal plasticity. Scr. Mater. 54, 711–716 (2006)

    Article  Google Scholar 

  22. Ortiz M., Repetto E.A.: Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47, 397–462 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ortiz M., Repetto E.A., Stainier L.: A theory of subgrain dislocation structures. J. Mech. Phys. Solids 48, 2077–2114 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Read W.T., Shockley W.: Dislocation models of crystal grain boundaries. Phys. Rev. 78, 275–289 (1950)

    Article  MATH  Google Scholar 

  25. Berdichevsky V.L.: Thermodynamics of microstructure evolution: grain growth. Int. J. Eng. Sci. 57, 50–78 (2012)

    Article  MathSciNet  Google Scholar 

  26. Castro-Fernandez F.R., Sellars C.M.: Relationship between room-temperature proof stress, dislocation density and subgrain size. Philos. Mag. A 60, 487–506 (1989)

    Article  Google Scholar 

  27. Hirth J.P., Lothe J.: Theory of Dislocations. Krieger, Florida (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Le.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, K.C., Junker, P. A thermodynamically consistent model of static and dynamic recrystallization. Arch Appl Mech 84, 1441–1451 (2014). https://doi.org/10.1007/s00419-014-0850-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0850-1

Keywords

Navigation