Skip to main content
Log in

Cell cycle regulation by growth factors and nutrients in normal and transformed cells

  • Symposia Proceeding
  • Mechanisms of Cellular Control
  • Published:
In Vitro Aims and scope Submit manuscript

Summary

SV3T3 cells, originally responsive to epidermal growth factor (EGF) and displaying density-dependent inhibition of growth, lose responsiveness to the growth factor after several passages and then proliferate without restriction, but continue to display EGF receptor sites at the cell surface. Proliferation of primary fetal rat hepatocytes is not stimulated by EGF, but cells bind it to an extent comparable to that of responsive 3T3 cells. Therefore presence of EGF receptors does not imply that cells are responsive to the growth factor. The relevance of some growth-factor-induced events for DNA synthesis initiation is dicussed. In various primary and secondary cell cultures, Ca++-levels appear to be involved in controlling cell proliferation. In contrast, in 3T3-4a cells, levels of Ca++ ions are not tightly coupled to DNA synthesis initiation; effects of growth factors are not mediated by extracellular Ca++ ions, but cells have a Ca++-sensitive restriction, point in G1. In various cell types in primary or secondary culture or in 3T3-4a cells, polyamine, levels are not tightly coupled to induction of proliferation. Therefore growth-factor-induced ornithine decarboxylase is not an event essential for DNA synthesis initiation. Normal but not transformed cells have a spermidine/spermine-sensitive restriction point in G1. Although rRNA synthesis appears to be necessary for induction of proliferation, preliminary data obtained by double-beam flow microfluorometry suggest that cellular RNA levels might not affect rate of entry into S phase and, furthermore, that 3T3-4a cells can enter S without accumulating RNA above levels present in quiescent cells. It appears that none of the events induced during the prereplicative phase that have been studied in 3T3 cells are essential for DNA synthesis initiation under normal culture conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holley, R. W. 1975. Control of growth of mammalian cells in cell culture. Nature 258: 487–490.

    Article  PubMed  CAS  Google Scholar 

  2. Baserga R. 1976.Multiplication and Division in Mammalian Cells. Marcel Dekker, Inc., New York.

    Google Scholar 

  3. Paul, D., M. Henahan, and S. Walter. 1974. changes in growth control and growth requirements associated with neoplastic transformationin vitro. J. Natl. Cancer Inst. 53: 1499–1503.

    PubMed  CAS  Google Scholar 

  4. Pardee, A. B. 1971. The surface membrane as a regulator of animal cell division. In Vitro 7: 95–104.

    Google Scholar 

  5. Green, H. 1974. Ribosome synthesis during preparation for division in the fibroblast. In: B. Clarkson, and R. Baserga (Eds.),Control of Proliferation in Animal Cells. cold Spring Harbor Laboratory, New York, pp. 743–755.

    Google Scholar 

  6. Lapetina, E. G., and R. W. Michell. 1973. Phosphatidyl inositol metabolism in cells receiving extracellular stimulation. FEBS Lett. 31: 1–20.

    Article  PubMed  CAS  Google Scholar 

  7. Russell, D. H., V. J. Medina, and S. H. Snyder. 1970. The dynamics of synthesis and degradation of polyamines in normal and regenerating rat liver and brain. J. Biol. Chem. 245: 6732–6740.

    PubMed  CAS  Google Scholar 

  8. Leffert, H. L., and D. Paul. 1972. Studies on primary cultures of differentiated fetal liver cells. J. Cell Biol. 52: 559–568.

    Article  PubMed  CAS  Google Scholar 

  9. Paul, D., and S. Walter. 1975. Growth control in primary fetal rat liver cells in culture. J. Cell. Physiol. 85: 113–123.

    Article  PubMed  CAS  Google Scholar 

  10. Hülser, D. F., H.-J. Ristow, D. J. Webb, H. Pachowsky, and W. Frank. 1974. Fibroblastoid and epitheloid cells in tissue culture: Differences in sensitivity to ouabain and to phospholipid composition. Biochim. Biophys. Acta 372: 85–99.

    PubMed  Google Scholar 

  11. Cohen, S., and C. R. Savage. 1974. Recent studies on the chemistry and biology of epidermal growth factor. Recent Prog. Horm. Res. 30: 551–572.

    PubMed  CAS  Google Scholar 

  12. Savage, C. R., and S. Cohen. 1972. Epidermal growth factor and a new derivative: Rapid isolation procedures and biological and chemical characterization. J. Biol. Chem. 247: 7609–7611.

    PubMed  CAS  Google Scholar 

  13. Thorell, J. I., and B. G. Johansson. 1971. Enzymatic iodination of polypeptides with125I to a high specific activity. Biochim. Biophys. Acta 251: 363–369.

    PubMed  CAS  Google Scholar 

  14. Gospodarowicz, D., K. D. Brown, C. R. Birdwell, and B. Zetter. The control of proliferation of vascular endothelial cells of human origin. J. Exp. Med., in press.

  15. Kremzner, L. T. 1973. Polyamine metabolism in normal and neoplastic neural tissue. In: D. H. Russell (Ed.),Polyamines in Normal and Neoplastic Growth. Raven Press. New York, pp. 27–40.

    Google Scholar 

  16. Rupniak, H. T., and D. Paul. 1978. Regulation of the cell cycle by polyamines in normal and transformed fibroblasts. In: R. A. Campbell (Ed.),Advances in Polyamine Research. Vol. 1. Raven Press, New York, in press.

    Google Scholar 

  17. Crissman, H. A., and R. A. Tobey. 1974. Cell cycle analysis in 20 minutes. Science 184: 1294–1298.

    Article  Google Scholar 

  18. Van Dilla, M. A., T. T. Trujillo, P. F. Mullaney, and J. R. Coulter. 1969. Cell microfluorimetry: A method for rapid fluorescence measurement. Science 163: 1213–1214.

    Article  PubMed  Google Scholar 

  19. Darzynkiewicz, Z., F. Traganes, T. Sharpless, and M. R. Melamed. 1976. Lymphocyte stimulation: A rapid multiparameter analysis. Proc. Natl. Acad. Sci. U.S.A. 73: 2881–2884.

    Article  PubMed  CAS  Google Scholar 

  20. Paul, D., A. Lipton, and I. Klinger. 1971. Serum factor requirements of normal and Simian virus 40-transformed 3T3 mouse fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 68: 645–648.

    Article  PubMed  CAS  Google Scholar 

  21. Holley, R. W., and J. A. Kiernan. 1974. Control of the initiation of DNA synthesis in 3T3 cells; Serum factors. Proc. Natl. Acad. Sci. U.S.A. 71: 2908–2911.

    Article  CAS  Google Scholar 

  22. Gospodarowicz, D., and J. S. Moran. 1974. Stimulation of division of sparse and confluent 3T3 cell populations by a fibroblast growth factor, dexamethasone and insulin. Proc. Natl. Acad. Sci. U.S.A. 71: 4584–4588.

    Article  PubMed  CAS  Google Scholar 

  23. Gospodarowicz, D. 1976. Growth factors in mammalian cell culture. Annu. Rev. Biochem. 45: 531–558.

    Article  PubMed  CAS  Google Scholar 

  24. Leffert, H. L. 1974. Growth control of differentiated fetal rat hepatocytes in primary monolayer culture. VII. Hormonal control of DNA synthesis and its possible significance to the problem of liver regeneration. J. Cell Biol. 62: 792–801.

    Article  PubMed  CAS  Google Scholar 

  25. Paul, D., H.-J. Ristow, H. T. Rupniak, and T. O. Messmer. 1977. Growth control by serum factors and hormones in mammalian cells in culture. In: J. Papaconstantinou (Ed.),Molecular Control of Proliferation and Cytodifferentiation. (Symp. Soc. Dev. Biol.), in press.

  26. Paul, D., and H.-J. Ristow. 1977. 3T3 cell growth initiation by serum factors and hormones that replace serum, submitted for publication.

  27. Hayashi, I., and G. Sato. 1976. Replacement of serum by hormones permits growth of cells in a defined medium. Nature 259: 132–135.

    Article  PubMed  CAS  Google Scholar 

  28. Hoffman, R., and H.-J. Ristow, J. Veser, and W. Frank. 1973. Properties of two growth-stimulating proteins isolated from fetal calf serum. Exp. Cell Res. 80: 275–282.

    Article  Google Scholar 

  29. Paul, D. 1977. Growth factor requirement of SV40-virus-transformed cells. Fed. Proc. 36: 925.

    Google Scholar 

  30. Todaro, G. J., F. E. DeLarco, and S. Cohen. 1976. Transformation by murine and feline sarcoma viruses specifically blocks binding of epidermal growth factor to cells. Nature 264: 26–31.

    Article  PubMed  CAS  Google Scholar 

  31. Carpenter, H., K. J. Lembach, M. M. Morrison, and S. Cohen. 1975. Characterization of the binding of125I-labeled EGF to human fibroblasts. J. Biol. Chem. 250: 4297–4304.

    PubMed  CAS  Google Scholar 

  32. Gospodarowicz, D., A. L. Mescher, K. D. Brown, and C. R. Birdwell. 1977. The role of fibroblast and epidermal growth factor in the proliferative response of the corneal and lens epithelium. Exp. Eye Res., in press.

  33. Holley, R. W., J. H. Baldwin, J. A. Kiernan, and T. O. Messmer. 1976. Control of growth of benzo(a)pyrene-transformed 3T3 cells. Proc. Natl. Sci. U.S.A. 73: 3229–3232.

    Article  CAS  Google Scholar 

  34. Richman, R. A., T. H. Claus, S. J. Pilkis, and D. L. Friedman. 1976. Hormonal stimulation of DNA synthesis in primary cultures of adult rat hepatocytes. Proc. Natl. Acad. Sci. U.S.A. 73: 3589–3593.

    Article  PubMed  CAS  Google Scholar 

  35. Carpenter, G., and S. Cohen. 1976.125I-labeled human epidermal growth factor: Binding, internalization and degradation in human fibroblasts. J. Cell Biol. 71: 159–171.

    Article  PubMed  CAS  Google Scholar 

  36. Hershko, A., P. Mamont, R. Shields, and G. M. Tomkins. 1971. Pleiotypic response. Nature (London) New Biol. 232: 206–211.

    CAS  Google Scholar 

  37. Frank, W. 1973. Calcium and Kaliumionen, als Cofaktoren. Z. Naturforsch. 28c: 322–328.

    Google Scholar 

  38. Freedman, M. H., M. C. Raff, and B. Gomperts. 1975. Induction of increased calcium uptake in mouse T lymphocytes by concanavalin A and its modulation by cyclic nucleotides. Nature 255: 378–382.

    Article  PubMed  CAS  Google Scholar 

  39. Rozengurt, E., and L. A. Heppel. 1975. Serum rapidly stimulates ouabain-sensitive86Rb+ influx in quiescent 3T3 cells. Proc. Natl. Acad. Sci. U.S.A. 72: 4492–4494.

    Article  PubMed  CAS  Google Scholar 

  40. Cunningham, D. D., and A. B. Pardee. 1969. Transport changes rapidly initiated by serum addition to “contact inhibited” 3T3 cells. Proc. Natl. Acad. Sci. U.S.A. 64: 1049–1056.

    Article  PubMed  CAS  Google Scholar 

  41. Wiebel, F., and R. Baserga. 1969. Early alterations in amino acid pools and protein synthesis of diploid fibroblasts stimulated to synthesize DNA by addition of serum. J. Cell. Physiol. 74: 191–202.

    Article  PubMed  CAS  Google Scholar 

  42. Hoffmann, R., R. Ristow, H. Pachowsky, and W. Frank. 1974. Phospholipid metabolism in embryonic rat fibroblasts following stimulation by a combination of the serum proteins S1 and S2. Eur. J. Biochem. 49: 317–324.

    Article  PubMed  CAS  Google Scholar 

  43. Thrash, C. R., and D. D. Cunningham. 1974. Dissociation of increased hexose transport from initiation of fibroblast proliferation. Nature 252: 45–47.

    Article  PubMed  CAS  Google Scholar 

  44. Greenberg, D. B., G. S. Barsh, T. S. Ho, and D. D. Cunningham. 1977. Serum-stimulated phosphate uptake and initiation of fibroblast proliferation. J. Cell. Physiol. 90: 193–210.

    Article  CAS  Google Scholar 

  45. Naiditch, W. P., and D. D. Cunningham. 1977. Hexose uptake and control of fibroblast proliferation. J. Cell. Physiol. 92: 319–332.

    Article  PubMed  CAS  Google Scholar 

  46. Holley, R. W., and J. A. Kiernan. 1974. Control of initiation of DNA synthesis in 3T3 cells: Lowmolecular-weight nutrients. Proc. Natl. Acad. Sci. U.S.A. 71: 2942–2946.

    Article  PubMed  CAS  Google Scholar 

  47. Rupniak, H. T., and D. Paul. 1977. Inhibition of spermidine and spermine synthesis leads to growth arrest in rat embryo fibroblasts in G1. J. Cell. Physiol., in press.

  48. Paul, D., and H.-J. Ristow. 1977. Cell cycle control by Ca++ ions in mouse 3T3 cells and in transformed 3T3 cells, submitted for publication.

  49. Loskutoff, D., and D. Paul. 1977. Plasminogen activator activity in 3T3 and transformed 3T3 cells and its control in the cell cycle, submitted for publication.

  50. Pardee, A. B. 1974. A restriction point for control of normal animal proliferation. Proc. Natl. Acad. Sci. U.S.A. 71: 1286–1280.

    Article  PubMed  CAS  Google Scholar 

  51. Raina, A., and P. Hannonen. 1971. Biosynthesis of spermidine and spermine in regenerating rat liver: Some properties of the enzyme systems involved. Acta Chem. Scand. 24: 3061–3064.

    Article  Google Scholar 

  52. Fillingame, R. H., C. M. Forstad, and D. H. Morris. 1975. Increased cellular levels of spermidine and spermine are required for optimal DNA synthesis in lymphocytes activated by concanavalin A. Proc. Natl. Acad. Sci. U.S.A. 72: 4042–4045.

    Article  PubMed  CAS  Google Scholar 

  53. Mauck, J. C., and H. Green. 1973. Regulation of RNA synthesis in fibroblasts during transition from resting to growing state. Proc. Natl. Acad. Sci. U.S.A. 70: 2819–2822.

    Article  PubMed  CAS  Google Scholar 

  54. Brooks, R. 1975. The kinetics of serum-induced initiation of DNA synthesis in BHK21/C13 cells and the influence of exogenous adenosine. J. Cell. Physiol. 86: 369–377.

    Article  PubMed  CAS  Google Scholar 

  55. Brooks, R. 1976. Regulation of the fibroblast cell cycle by serum. Nature 260: 248–250.

    Article  PubMed  CAS  Google Scholar 

  56. Grummt, F., D. Paul, and I. Grummt. 1977. Regulation of ATP pools, rRNA and DNA synthesis in 3T3 cells in response to serum and hypoxanthine. Eur. J. Biochem. 76: 7–12.

    Article  PubMed  CAS  Google Scholar 

  57. Darzynkierwicz, A., F. Traganos, T. Sharpless, and M. R. Melamed. 1975. Acridine orange staining and automated cytofluorometry in studies of conformation changes in nucleur chromatin. In: C. Haanen, H. Hillen, and J. Wessels (Eds.),Pulse-Cytophotometry. Part II. European Press Medium, Ghent, pp. 85–102.

    Google Scholar 

  58. Rixon, R. H., and J. F. Whitfield. 1976. The control of liver regeneration by parathyroid hormone and calcium. J. Cell. Physiol. 87: 147–156.

    Article  CAS  Google Scholar 

  59. Hesketh, T. R., G. A. Smith, M. D. Houslay, G. B. Warren, and J. C. Metcalfe. 1977. Is an early calcium flux necessary to stimulate lymphocytes? Nature 267: 490–494.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by Research Grants GM 20101, CA 15087, CA 14195, CA 12227 and CA 11176 from the USPHS, and Grant BC-30D from the American Cancer Society.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, D., Brown, K.D., Thomas Rupniak, H. et al. Cell cycle regulation by growth factors and nutrients in normal and transformed cells. In Vitro 14, 76–84 (1978). https://doi.org/10.1007/BF02618176

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02618176

Key words

Navigation