Skip to main content
Log in

Generic properties of combinatory maps: Neutral networks of RNA secondary structures

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Random graph theory is used to model and analyse the relationship between sequences and secondary structures of RNA molecules, which are understood as mappings from sequence space into shape space. These maps are non-invertible since there are always many orders of magnitude more sequences than structures. Sequences folding into identical structures formneutral networks. A neutral network is embedded in the set of sequences that arecompatible with the given structure. Networks are modeled as graphs and constructed by random choice of vertices from the space of compatible sequences. The theory characterizes neutral networks by the mean fraction of neutral neighbors (λ). The networks are connected and percolate sequence space if the fraction of neutral nearest neighbors exceeds a threshold value (λ>λ*). Below threshold (λ<λ*), the networks are partitioned into a largest “giant” component and several smaller components. Structure are classified as “common” or “rare” according to the sizes of their pre-images, i.e. according to the fractions of sequences folding into them. The neutral networks of any pair of two different common structures almost touch each other, and, as expressed by the conjecture ofshape space covering sequences folding into almost all common structures, can be found in a small ball of an arbitrary location in sequence space. The results from random graph theory are compared to data obtained by folding large samples of RNA sequences. Differences are explained in terms of specific features of RNA molecular structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

v[G]:

Vertex set of graphG

e[G]:

Edge set of graphG

ω(X):

Cardinality ofX as a set

δ v :

Vertex degree in a corresponding graphG

Q n α :

Generalized hypercube

\(\hat X\) :

X is a random variable

E[\(\hat X\)]:

Expectation value of the random variable\(\hat X\)

V[\(\hat X\)]:

Variance of\(\hat X\)

E[\(\hat X\)] r :

rth factorial moment of\(\hat X\)

μ n, λ,μ n :

Measure\(\mu _n (\Gamma _n )\mathop = \limits^{def} \lambda ^{\omega (v[\Gamma ])} (1 - \lambda )^{\omega (v[H]) - \omega (v[\Gamma ])} \)

Ω n :

Probability space ({Γ n },μ n, λ

\(\hat X_{n,k} \) :

Number of vertices in a random graph Γ n having degreek

\(\hat I_n (\Gamma _n )\) :

=ω({v∈v[Γ n ]|∂{v}∩v[Γ n ]=∅}), i.e., the number of isolated vertices in a random graph Γ n

\(\hat Z_n (\Gamma _n )\) :
figure 1

i.e. the number of vertices inQ n α that are at least of distance 2 w.r.t. a random graph Γ n

\(M_{n,k}^{\upsilon ,\upsilon '} (\Gamma _n )\) :

Set of paths {π1)|π1)∈Π(Γ n )}

\(\hat Y_{n,k}^{\upsilon ,\upsilon '} \) :

\( = \omega (M_{n,k}^{\upsilon ,\upsilon '} (\Gamma _n ))\) and 0 otherwise

\(\hat \Lambda _{n,k} \) :

Random variable that is 1 if all pairs υ,υ′∈v[Γ n ] withd(v, v′)<k occur in a path ofd(υ,υ′)<k and 0 otherwise

G V :

Set of adjacent vertices w.r.t. a vertex setV⊂v[G] in a graphG

\(\bar V\) :

v[V]∪∂V, i.e. the closure ofV

r (v):
figure 2

the “ball” with radiusr and centerv

n :

Chain length

n u ,n p :

Number of unpaired and paired based of a certain secondary structure

γ n :

(α−1)n, i.e. the vertex degrees ofQ n α

s :

RNA secondary structure inn vertices

Π(s :

\(\mathop = \limits^{def} \left\{ {\left[ {i,k} \right]|a_{i,k} = 1,k \ne i - 1,i + 1} \right\}\) i.e. the set of contacts of the secondary structures

L n :

Shape space, in particular, the space of RNA secondary structures inn vertices

C[s]:

Graph of compatible sequences with respect tos

C[s]:

v[C[s]], the set of compatible sequences

S n :

Permutation group ofn letters

D m :

Dihedral group of order2m

Φ Γ x :

G 1 ×G 2{y∈v[G 2]⋎(x, y)∈v[⩾s]}], the fiber inx

Φ Γ y :

G 1 ×G 2[{x∈v[G 1]⋎(x, y)∈v[⩽s]}], the fiber iny

Γ A n [s]:

Random induced subgraph of

figure 3

according to model A

Γ B n [s]:

Random induced subgraph of

figure 4

according to model B

dist(Γ1, Γ2):

Minimum Hamming distance between the graph Γ1 and Γ2 considered as subgraph ofQ n α

References

  • Ajtai, M., J. Komlós and E. Szemerédi. 1982. Largest random component of ak-cube.Combinatorica,2, 1–7.

    MATH  MathSciNet  Google Scholar 

  • Bollobás, B. 1985.Random Graphs. London: Academic Press.

    MATH  Google Scholar 

  • Bonhoeffer, S. and P. F. Stadler. 1993. Error threshold on complex fitness landscapes.J. Theor. Biol. 164, 359–372.

    Article  Google Scholar 

  • Buckley, F. and F. Harrary. 1990.Distances in Graphas Reading, MA: Addison-Wesley.

    Google Scholar 

  • Derrida, B. and L. Peliti. 1991. Evolution in a flat fitness landscape.Bull. Math. Biol. 53, 355–382.

    MATH  Google Scholar 

  • Eigen, M. 1971. Self-organization of matter and the evolution of biological macromolecules.Naturwissenschaften 58, 465–523.

    Article  Google Scholar 

  • Eigen, M., J. McCaskill and P. Schuster. 1989. The molecular quasispecies.Adv. Chem. Phys. 75, 149–263.

    Google Scholar 

  • Eigen, M. and P. Schuster. 1977. The hypercycle. A principle of natural self-organization. Part A: emergence of the hypercycle.Naturwissenschaften 64, 541–565.

    Article  Google Scholar 

  • Fontana, W. T. Griesmacher, W. Schnabl, P. F. Stadler and P. Schuster. 1991. Statistics of landscapes based on free energies, replication and degradation rate constants of RNA secondary structures.Mh. Chem. 122, 795–819.

    Google Scholar 

  • Fontana, W., W. Schnabl and P. Schuster. 1989. Physical aspects of evolutionary optimization and adaptation.Phys. Rev. A 40, 3301–3321.

    Article  Google Scholar 

  • Fontana, W. and P. Schuster. 1987. A computer model of evolutionary optimization.Biophys. Chem. 26, 123–147.

    Article  Google Scholar 

  • Fontana, W., D. A. M. Konings, P. F. Stadler and P. Schuster. 1993a. Statistics of RNA secondary structures.Biopolymers 33, 1389–1404.

    Article  Google Scholar 

  • Fontana, W., P. F. Stadler, E. G. Bornberg-Bauer, T. Griesmacher, I. L. Hofacker, M. Tacker, P. Tarazona, E. D. Weinberger and P. Schuster. 1993b. RNA folding and combinatory landscapes.Phys. Rev. E 47, 2083–2099.

    Article  Google Scholar 

  • Freier, S., R. Kierzek, J. Jaeger, N. Sugimoto, M. Caruthers, T. Neilson and D. Turner. 1986. Improved free-energy parameters for predictions of RNA duplex stability.Proc. Natl. Acad. Sci. USA 83, 9373–9377.

    Article  Google Scholar 

  • Grüner, W., R. Giegerich, D. Strothmann, C. Reidys, J. Weber, I. L. Hofacker, P. F. Stadler and P. Schuster. 1996a. Analysis of RNA sequence structure maps by exhaustive enumeration. I. Neutral networks.Mh. Chem. 127, 355–374.

    Google Scholar 

  • Grüner, W., R. Giegerich, D. Strothmann, C. Reidys, J. Weber, I. L. Hofacker, P. F. Stadler and P. Schuster. 1996b. Analysis of RNA sequence structure maps by exhaustive enumeration. II. Structure of neutral networks and shape space covering.Mh. Chem. 127, 375–389.

    Google Scholar 

  • Hamming, R. W. 1950. Error detecting and error correcting codes.Bell Syst. Tech. J 29, 147–160.

    MathSciNet  Google Scholar 

  • Harper, L. 1966. Minimal numberings and isoperimetric problem on cubes.Theory of Graphs, International Symposium. Rome.

  • Hofacker, I. L. 1994.A Statistical Characterization of the Sequence to Structure Mapping in RNA. Ph.D. thesis, Universität Wien.

  • Hofacker, I. L., W. Fontana, P. F. Stadler, M. Bonhoeffer, M. Tacker and P. Schuster. 1994. Fast folding and comparison of RNA secondary structures.Mh. Chem. 125, 167–188.

    Google Scholar 

  • Hofacker, I. L., P. Schuster and P. F. Stadler. 1996. Combinatorics of RNA secondary structures. Preprint.

  • Hogeweg, P. and B. Hesper. 1984. Energy directed folding of RNA sequences.Nucleic Acids Res. 12, 67–74.

    Google Scholar 

  • Huynen, M. A., P. F. Stadler and W. Fontana. 1996. Smoothness within ruggedness: the role of neutrality in adaptation.Proc. Natl. Acad. Sci. USA 93, 397–401.

    Article  Google Scholar 

  • Kesten, H. 1982.Percolation Theory for Mathematics. Boston, MA: Birkhäuser.

    Google Scholar 

  • Kimura, M. 1983.The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press.

    Google Scholar 

  • Konings, D. and P. Hogeweg. 1989. Pattern analysis of RNA secondarys structure. Similarity and consensus of minimal-energy folding.J. Mol. Biol. 207, 597–614.

    Article  Google Scholar 

  • Li, H., R. Helling, C. Tang and N. Wingreen 1996. Emergence of preferred structures in a simple model of protein folding.Science 273, 666–669.

    Google Scholar 

  • Martinez, H. 1984. An RNA folding rule.Nucleic Acids Res. 12, 323–335.

    Google Scholar 

  • McCaskill, J. 1990. The equilibrium partition function and base pair bindings probabilities for RNA secondary structure.Biopolymers 29, 1105–1119.

    Article  Google Scholar 

  • Nowak, M. and P. Schuster. 1989. Error thresholds of replication in finite populations. Mutation frequencies and the onset of Muller's ratchet.J. Theor. Biol. 137, 375–395.

    Google Scholar 

  • Nussinov, R., G. Piecznik, J. Griggs and D. Kleitman. 1978. Algorithms for loop matching.SIAM J. Appl. Math. 35, 68–82.

    Article  MATH  MathSciNet  Google Scholar 

  • Reidys, C. 1995.Neutral Networks of RNA Secondary Structures. Ph.d. thesis, Friedrich-Schiller-Universität Jena.

    Google Scholar 

  • Reidys, C., C. V. Forst and P. Schuster. 1996. Replication on neutral networks of RNA secondary structures. Preprint.

  • Riordan, J. 1978.An Introduction to Combinatorial Analysis. Princetons, NJ: Princeton University Press.

    MATH  Google Scholar 

  • Salser, W. 1977. Globin messenger RNA sequences—analysis of base-pairing and evolutionary implications.Cold Spring Harbor Symp. Quant. Biol. 42, 985.

    Google Scholar 

  • Sankoff, D., G. Leduc, N. Antoine, B. Pacquin, B. F. Lang and R. Cedergren. 1992. Gene comparisons for phylogenetic inference: evolution of the mitochondrial genome.Proc. Natl. Acad. Sci. USA 89, 6575–6579.

    Article  Google Scholar 

  • Schuster, P. 1995a. Artificial life and molecular evolutionary biology. InAdvances in Artificial Life. F. Morán, A. Moreno, J. J. Morelo and P. Chacón (Eds).Lecture Notes in Artificial Intelligence, Vol. 929, pp. 3–19, Berlin: Springer-Verlag.

    Google Scholar 

  • Schuster, P. 1995b. How to search for RNA structures. Theoretical concepts in evolutionary biotechnology.J. Biotechnol. 41, 239–257.

    Article  Google Scholar 

  • Schuster, P., W. Fontana, P. F. Stadler and K. L. Hofacker. 1994. From sequences to shapes and back: a case study in RNA secondary structures.Proc. Roy. Soc. (London) B 255, 279–284.

    Google Scholar 

  • Schuster, P. and P. F. Stadler. 1994. Landscapes: complex optimization problems and biopolymer structures.Computers Chem. 18, 295–314.

    Article  MATH  Google Scholar 

  • Serre, J.-P. 1977.Linear Representations of Finite Groups. Berlin: Springer.

    MATH  Google Scholar 

  • Shapiro, B. A. 1988. An algorithm for comparing multiple RNA secondary structures.CABIOS 4, 381–393.

    Google Scholar 

  • Shapiro, B. A. and K. Zhang. 1990. Comparing multiple RNA secondary structures using tree comparisons.CABIOS 6, 309–318.

    Google Scholar 

  • Stauffer, D. 1985.Introduction to Percolation Theory. London: Taylor and Francis.

    MATH  Google Scholar 

  • Tacker, M., W. Fontana, P. F. Stadler and P. Schuster. 1994. Statistics of RNA melting kinetics.Eur. Biophys. J. 23, 29–38.

    Article  Google Scholar 

  • Tacker, M., P. F. Stadler, E. G. Bornberg-Bauer, K. L. Hofacker and P. Schuster. 1996. Algorithm independent properties of RNA secondary structure predictions.Eur. Biophys. J. 25, 115–130.

    Article  Google Scholar 

  • Turner, D. H., N. Sugimoto and S. Freier. 1988. RNA structure prediction.Annual Review of Biophysics and Biophysical Chemistry 17, 167–192.

    Article  Google Scholar 

  • Waterman, M. S. 1978. Secondary structure of single-stranded nucleic acids.Adv in Math. 1, 167–212.

    MATH  MathSciNet  Google Scholar 

  • Zuker, M. and D. Sankoff. 1984. RNA secondary structures and their prediction.Bull. Math. Biol. 46, 591–621.

    MATH  Google Scholar 

  • Zuker, M. and P. Stiegler. 1981. Optimal computer folding of larger RNA sequences using thermodynamics and auxiliary information.Nucleic Acids Res. 9, 133–148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Deicated to professor Manfred Eigen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reidys, C., Stadler, P.F. & Schuster, P. Generic properties of combinatory maps: Neutral networks of RNA secondary structures. Bltn Mathcal Biology 59, 339–397 (1997). https://doi.org/10.1007/BF02462007

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02462007

Keywords

Navigation