Skip to main content
Log in

Ancestral remnants in deoxyribonucleic acid fromPseudomonas andXanthomonas

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Reciprocal hybridizations were carried out between DNA fromPseudomonas fluorescens, P. putida and a xanthomonad,P. campestris var.pelargonii. Furthermore, DNA-fragments from each organism, preselected by hybridization with each of the other two strains, were again hybridized with all three DNA-types. The molecular weight of the chromosomal DNA from the three organisms is about equal, having a value of 2.4·0.4×109 daltons/nucleoid or 3.9 × 106 nucleotide pairs/nucleoid. About half of the DNA from each organism has a similar, but not identical, nucleotide sequence. Theputida- andfluorescens-DNA share an additional 33°. homology. From the present and previous experiments it can be hypothesized that all xanthomonads share an additional stretch of homologous DNA, amounting to some 25–40% of the bacterial chromosome. The remaining DNA in each organism (about 15%) is probably responsible for strain individuality (varieties, races and strains within the same genospecies). The results suggest that the three organisms are derived from a common pool of ancestors; that the xanthomonads diverged first or fastest and that the split betweenP. putida andP. fluorescens is a more recent event. The mean molar (guanine + cytosine) content of the common part is identical to that of the total parent DNA. The average value for the three organisms is 62·2% (G+C). The direction of the evolutionary drift of the (G+C) content between these closely related organisms is not detectable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berns, K. I. andThomas, C. A., Jr. 1965. Isolation of high molecular weight DNA fromHemophilus influenzae. J. Mol. Biol.11 476–490.

    PubMed  Google Scholar 

  • Bolton, E. T., Britten, R. J., Byers, T. J., Cowte, D. B., Hoyer, B., Kato, Y., McCarthy, B. J., Mirand, M. andRoberts, R. B. 1963–64. Carnegie Institution, Annual Report. p. 366–397.

  • Cairns, J. 1963. The chromosome ofEscherichia coli. Cold Spring Harbor Symp. Quant. Biol.28 43–45.

    Google Scholar 

  • De Ley, J. andFriedman, S. 1964. Deoxyribonucleic acid hybrids of acetic acid bacteria. J. Bacteriol.88 937–945.

    PubMed  Google Scholar 

  • De Ley, J. andFriedman, S. 1965. Similarity ofXanthomonas andPseudomonas deoxyribonucleic acid. J. Bacteriol89 1306–1309.

    PubMed  Google Scholar 

  • De Ley, J. Park, I. W., Tutgat, R. andVan Ermengem, J. 1966. DNA homology and taxonomy ofPseudomonas andXanthomonas. J. Gen. Microbiol.42 43–56.

    PubMed  Google Scholar 

  • De Ley, J. andSchell, J. 1963. Deoxyribonucleic acid base composition of acetic acid bacteria. J. Gen. Microbiol.33 243–253.

    PubMed  Google Scholar 

  • Dennis, E. S. andWake, R. G. 1966. Autoradiography of theBacillus subtilis chromosome. J. Mol. Biol.15 435–439.

    PubMed  Google Scholar 

  • Freese, E. 1962. On the evolution of the base composition of DNA. J. Theoret. Biol.3 81–101.

    Google Scholar 

  • Holloway, B. W. andFargie, B. 1960. Fertility factors and genetic linkage inPseudomonas aeruginosa. J. Bacteriol.80 362–368.

    PubMed  Google Scholar 

  • Jesse, O. 1965.Pseudomonas aeruginosa and other green fluorescent pseudomonads. Munksgaard, Copenhague.

    Google Scholar 

  • Lysenko, O. 1961.Pseudomonas — an attempt at a general classification. J. Gen. Microbiol.25 379–408.

    PubMed  Google Scholar 

  • McCarthy, B. J. andBolton, E. T. 1963. An approach to the measurement of genetic relatedness among organisms. Proc. Natl. Acad. Sci. U.S.50 156–162.

    Google Scholar 

  • Mandel, M. 1966. Deoxyribonucleic acid base composition in the genusPseudomonas. J. Gen. Microbiol.43 273–292.

    PubMed  Google Scholar 

  • Massie, H. R. andZimm, B. H. 1965. Molecular weight of the DNA in the chromosomes ofE. coli andB. subtilis. Proc. Natl. Acad. Sci. U.S.54 1636–1641.

    Google Scholar 

  • Morowitz, H. J., Tourtellotte, M. E., Guild, W. R., Castro, E., Woese, C. andClfverdon, R. C. 1962. The chemical composition and submicroscopic morphology ofMycoplasma gallisepticum, avian PPLO 5969. J. Mol. Biol.4 93–103.

    PubMed  Google Scholar 

  • Smith, A. G. 1950. Electron and light microscopic studies of bacterial nucleic. J. Bacteriol.59 575–587.

    PubMed  Google Scholar 

  • Sufoka, N. 1962. On the genetic basis of variation and heterogeneity of DNA base composition. Proc. Natl. Acad. Sci. U.S.48 582–592.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, I.W., De Ley, J. Ancestral remnants in deoxyribonucleic acid fromPseudomonas andXanthomonas . Antonie van Leeuwenhoek 33, 1–16 (1967). https://doi.org/10.1007/BF02045528

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02045528

Keywords

Navigation