Skip to main content
Log in

Structural simplicity of theZonula Occludens in the electrolyte secreting epithelium of the avian salt gland

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The structure of thezonula occludens in the secretory epithelium of the salt gland of the domestic duck was determined by thin section and freeze-fracture electron microscopy. These glands secrete an effluent with a NaCl concentration four times that of plasma, and thus maintain a steep ionic gradient across their secretory epithelium. Freezefracture replicas from salt stressed ducks demonstrate that thezonula occludens is surprisingly shallow in depth (20–25 nm) and generally consists of two parallel junctional strands which are juxaposed along their entire length. In addition to the simplicity of the junction separating mucosal and serosal compartments, the ratio of junctional length to apical surface area is large since luminal surfaces of secretory cells are narrow and intermesh with one another. Thezonula occludens in nonsecreting fresh water-adapted birds is similar to the salt stressed group except that two sets of double strand junctions are seen in addition to junctions consisting of a single set. Based on previous ultrastructural, cytochemical and physiological studies in salt glands and in other epithelia, a model for salt secretion was suggested in which intercellular space Na+, generated by basolateral ouabain-sensitive Na+ pumps, reaches the lumen via a paracellular route (Ernst & Mills, 1977,J. Cell Biol. 75:74). The simplicity of the morphological appearance of thezonula occludens in the salt gland, which resembles that described for several epithelia known to be leaky to ions, is consistent with this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boulpaep, E.L. 1971. Electrophysiological properties of the proximal tubule: Importance of cellular and intercellular transport pathways.In: Electrophysiology of Epithelial Cells. Symposia Medica Hoechst. 1970. G. Giebisch, editor. Schattauer Verlag, Stuttgart

    Google Scholar 

  2. Claude, P. 1978. Morphological factors influencing transepithelial permeability: A model for the resistance of thezonula occludens.J. Membrane Biol. 39:219

    Google Scholar 

  3. Claude, P., Goodenough, D.A. 1973. Fracture faces ofzonulae occludentes from “tight” and “leaky” epithelia.J. Cell Biol. 58:390

    Google Scholar 

  4. DiBona, D.R., Civan, M.M. 1973. Pathways for movement of ions and water across toad urinary bladder. I. Anatomic site of transepithelial shunt pathways.J. Membrane Biol. 12:101

    Google Scholar 

  5. Dunson, W.A., Packer, P.K., Dunson, M.K. 1971. Sea snakes: An unusual salt gland under the tongue.Science 173:437

    Google Scholar 

  6. Ellis, R.A. 1965. DNA labelling and X-irradiation studies of the phosphatase-positive peripheral cells in the nasal (salt) glands of ducks.Am. Zool. 5:648

    Google Scholar 

  7. Ellis, R.A., Goertemiller, C.C., Jr., Stetson, D.L. 1977. Significance of extensive “leaky” cell junctions in the avian salt gland.Nature (London) 268:555

    Google Scholar 

  8. Erlij, D. 1976. Solute transport across isolated epithelia.Kidney Int. 9:76

    Google Scholar 

  9. Erlij, D., Martínez-Palomo, A. 1972. Opening of tight junctions in frog skin by hypertonic urea solutions.J. Membrane Biol. 9:229

    Google Scholar 

  10. Ernst, S.A. 1972. Transport adenosine triphosphatase cytochemistry. II. Cytochemical localization of ouabain-sensitive, potassium-dependent phosphatase activity in the secretory epithelium of the avian salt gland.J. Histochem. Cytochem. 20:23

    Google Scholar 

  11. Ernst, S.A., Dodson, W.B., Karnaky, K.J., Jr. 1978. Structural diversity ofzonulae occludentes in seawater-adapted killifish opercular epithelium.J. Cell Biol. 79:242a

    Google Scholar 

  12. Ernst, S.A., Ellis, R.A. 1969. The development of surface specialization in the secretory epithelium of the avian salt gland in response to osmotic stress.J. Cell Biol. 40:305

    Google Scholar 

  13. Ernst, S.A., Goertemiller, C.C., Jr., Ellis, R.A. 1967. The effect of salt regimens on the development of (Na+−K+)-dependent ATPase activity during growth of salt glands of domestic ducklings.Biochim. Biophys. Acta 135:682

    Google Scholar 

  14. Ernst, S.A., Mills, J.W. 1977. Basolateral plasma membrane localization of ouabainsensitive sodium transport sites in the secretory epithelium of the avian salt gland.J. Cell Biol. 75:74

    Google Scholar 

  15. Farquhar, M.G., Palade, G.E. 1963. Junctional complexes in various epithelia.J. Cell Biol. 17:375

    Google Scholar 

  16. Fletcher, G.L., Stainer, I.M., Holmes, W.N. 1967. Sequential changes in the adenosinetriphosphatase activity in the electrolyte excretory capacity of the nasal glands of the duck (Anas platyrhynchos) during the period of adaptation to hypertonic saline.J. Exp. Biol. 47:375

    Google Scholar 

  17. Frizzel, R.A., Schultz, S.G. 1972. Ionic conductances of extracellular shunt pathway in rabbit ileum. Influence of shunt on transmural sodium transport and electrical potential differences.J. Gen. Physiol. 59:318

    Google Scholar 

  18. Fromter, E. 1972. The route of passive ion movement through the epithelium ofNecturus gallbladder.J. Membrane Biol. 8:259

    Google Scholar 

  19. Fromter, E., Diamond, J. 1972. Route of passive ion permeation in epithelia.Nature New Biol. 235:9

    Google Scholar 

  20. Hanwell, A., Linzell, J.L., Peaker, M. 1971. Salt gland secretion and blood flow in the goose.J. Physiol. (London) 213:373

    Google Scholar 

  21. Humbert, F., Grandchamp, A., Pricam, C., Perrelet, A., Orci, L. 1976. Morphological changes in tight junctions ofNecturus maculosus proximal tubules undergoing saline diuresis.J. Cell Biol. 69:90

    Google Scholar 

  22. Karnaky, K.J., Jr., Degnan, K.J., Zadunaisky, J.A. 1977. Chloride transport across isolated opercular epithelium of Killifish: a membrane rich in chloride cells.Science 195:203

    Google Scholar 

  23. Karnovsky, M.J. 1971. Use of ferrocyanide-reduced osmium tetroxide in electron microscopy.Proc. 11th Annu. Meet. Am. Soc. Cell Biol. P. 146

  24. Kirschner, L.B. Greenwald, L., Sanders, M. 1974. On the mechanism of sodium extrusion across the irrigated gill of sea water-adapted rainbow trout (Salmo gairdneri).J. Gen. Physiol. 64:148

    Google Scholar 

  25. Machen, R.E., Erlij, D., Wooding, F.B.P. 1972. Permeable junctional complexes. The movement of lanthanum across rabbit gallbladder and intestine.J. Cell Biol. 54:302

    Google Scholar 

  26. Martin, B.J., Philpott, C.W. 1974. The adaptive response of the salt glands of adult mallard ducks to a salt water regime: An ultrastructural and tracer study.J. Exp. Zool. 186:111

    Google Scholar 

  27. Martinez-Palomo, A., Erlij, D. 1975. Structure of tight junctions in epithelia with different permeability.Proc. Nat. Acad. Sci. USA 72:4487

    Google Scholar 

  28. Peaker, M., Linzell, J.L. 1975. Salt glands in birds and reptiles. Cambridge University Press, Cambridge

    Google Scholar 

  29. Pricam, C., Humbert, F., Perrelet, A., Orci, L. 1974. A freeze-etch study of the tight junctions of the rat kidney tubules.Lab. Invest. 30:286

    Google Scholar 

  30. Riddle, C.V., Ernst, S.A. 1977. Structure of the zonula occludens in salt gland epithelium.J. Cell Biol. 75:68a

    Google Scholar 

  31. Schmidt-Nielson, K. 1960. The salt-secreting gland of marine birds.Circulation 21:955

    Google Scholar 

  32. Siegel, N.J., Schon, D.A., Hayslett, J.P. 1976. Evidence for active chloride transport in dogfish rectal gland.Am. J. Physiol. 230:1250

    Google Scholar 

  33. Silva, P., Solomon, R., Spokes, K., Epstein, F.H. 1977. Ouabain inhibition of gill Na−K-ATPase: Relationship to active chloride transport.J. Exp. Zool. 199:419

    Google Scholar 

  34. Silva, P., Stoff, J., Field, M., Fine, L. 1977. Mechanism of active chloride secretion by shark rectal gland: Role of Na−K-ATPase in chloride transport.Am. J. Physiol. 233:F298

    Google Scholar 

  35. Skou, J.C. 1965. Enzymatic basis for active transport of Na+ and K+ across cell membranes.Physiol. Rev. 45:595

    Google Scholar 

  36. Staehelin, L.A. 1974. Structure and function of intercellular junctions.Int. Rev. Cytol. 39:191

    Google Scholar 

  37. Stewart, D.J., Semple, E.W., Swart, G.T., Sen, A.K. 1976. Induction of the catalytic protein of (Na++K+)-ATPase in the salt gland of the duck.Biochim. Biophys. Acta 419:150

    Google Scholar 

  38. Tisher, C.C., Yarger, W.E. 1975. Lanthanum permeability of tight junctions along the collecting duct of the rat.Kidney Int. 7:35

    Google Scholar 

  39. Van Lennep, E.W. 1968. Electron microscopic histochemical studies on salt-excreting glands in elasmobranchs and marine catfish.J. Ultrastruct. Res. 25:94

    Google Scholar 

  40. Wade, J.B., Karnovsky, M.J. 1974. Fracture faces of osmotically disruptedzonulae occludentes.J. Cell Biol. 62:344

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riddle, C.V., Ernst, S.A. Structural simplicity of theZonula Occludens in the electrolyte secreting epithelium of the avian salt gland. J. Membrain Biol. 45, 21–35 (1979). https://doi.org/10.1007/BF01869292

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869292

Keywords

Navigation