Skip to main content
Log in

The membrane action of antidiuretic hormone (ADH) on toad urinary bladder

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Radioactive tracer and electrical techniques were used to study the transport of nonelectrolytes and sodium, respectively, across toad urinary bladders in the presence and absence of ADH. The permeability of lipophilic molecules was roughly proportional to bulk phase oil/water partition coefficients both in the presence and absence of hormone; i.e., ADH elicited a general nonselective increase in the permeation of all nine solutes tested. The branched nonelectrolyte, isobutyramide, was less permeable than its straight-chain isomer,n-butyramide, in control tissues. ADH reduced the discrimination between these structural isomers. Hydrophilic solutes permeated more rapidly than expected. In the presence of hormone, there was no change in the permeation of large hydrophilic solutes considered to move via an extracellular pathway, but there was a marked increase in the permeability of water and other small hydrophilic solutes. Collectively, these results suggest that ADH acts to increase the motional freedom or fluidity of lipids in the cell membrane which is considered to be the preferred pathway for the permeation of lipophilic and small hydrophilic molecules. At concentrations of cAMP and ADH which elicit equivalent increments in the shortcircuit current, the effects of these agents on nonelectrolyte transport and membrane electrical conductance are divergent. Such observations suggest that some membrane effects of ADH may not be directly dependent upon cAMP. ADH in the mucosal solution increased the permeability of the toad bladder when the surface charge on the outer surface of the apical membrane was screened with the polyvalent cation, La3+. These experiments emphasize that interaction of ADH with membranes of toad urinary bladder may account for at least some effects of this hormone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Argy, W. P., Handler, J. S., Orloff, J. 1967. Calcium and magnesium effects on toad bladder response to cyclic AMP, theophylline and ADH analogues.Amer. J. Physiol. 213:803

    PubMed  Google Scholar 

  • Bach, D., Miller, I. R. 1974. Interaction of vasopressin with phosphatidylserine bilayers.Biochim. Biophys. Acta 339:367

    PubMed  Google Scholar 

  • Bindslev, N., Wright, E. M. 1974. Anomalous permeation of small lipophilic solutes across frog urinary bladder.J. Physiol. (In press)

  • Civan, M. M., Frazier, H. S. 1968. The site of the stimulatory action of vasopressin on sodium transport in toad bladder.J. Gen. Physiol. 51:589

    PubMed  Google Scholar 

  • Collander, R. 1954. The permeability ofNitella cells to nonelectrolytes.Physiol. Plant. 4:420

    Google Scholar 

  • Coviello, A. 1973. Hydroosmotic effect of angiotensin II in the toad bladder.Acta Physiol. Latin Amer. 23:350

    Google Scholar 

  • Cuthbert, A. W., Painter, E. 1968. Independent action of antidiuretic hormone, theophylline and cyclic AMP on cell membrane permeability in frog skin.J. Physiol. 199:593

    PubMed  Google Scholar 

  • Dainty, J., House, C. R. 1966. Unstirred layers in frog skin.J. Physiol. 182:66

    PubMed  Google Scholar 

  • Diamond, J. M., Katz, Y. 1974. Interpretation of nonelectrolyte partition coefficients between dimyristoyl lecithin and water.J. Membrane Biol. 17:121

    Google Scholar 

  • Diamond, J. M., Wright, E. M., 1969. Biological membranes: The physical basis of ion and nonelectrolyte selectivity.Annu. Rev. Physiol. 31:581

    PubMed  Google Scholar 

  • Dix, J. A., Diamond, J. M., Kivelson, D. 1974. Translational diffusion coefficient and partition coefficient of a spin-labelled solute in lecithin bilayer membranes.Proc. Nat. Acad. Sci. U.S.A. 71:474

    Google Scholar 

  • Dousa, T. P., Walter, R., Schwartz, I. L., Sands, H., Hechter, O. 1972. Role of cyclic AMP in the action of neurohypophyseal hormones on kidney.In: Advances in Cyclic Nucleotide Research. P. Greengard, R. Paoletti and G. A. Robison, editors. Vol. I, p. 121. Raven Press, New York

    Google Scholar 

  • Eggena, P., Schwartz, I. L., Walter, R. 1968. Effects of neurohypophyseal hormones, theophylline and nucleotides on the smooth muscle of toad bladder.Life Sci. 7:979

    PubMed  Google Scholar 

  • Fettiplace, R., Haydon, D. A., Knowles, C. D. 1971. The action of lysine vasopressin on artificial lipid monolayers.J. Physiol. 221:18P

    Google Scholar 

  • Graziani, Y., Livne, A. 1971. Vasopressin and water permeability of artificial lipid membranes.Biochem. Biophys. Res. Commun. 45:321

    PubMed  Google Scholar 

  • Grey, D., Ullmann, E. 1969. Reduction by anesthetics of the effect of ADH on permeability of toad bladder.J. Physiol. 200:66P

    Google Scholar 

  • Handler, J. S., Butcher, R. W., Sutherland, E. W., Orloff, J. 1965. The effect of vasopressin and of theophylline on the concentration of adenosine 3′,5′-phosphate in urinary bladder of toad.J. Biol. Chem. 240:4524

    PubMed  Google Scholar 

  • Handler, J. S., Orloff, J. 1973. The mechanism of action of antidiuretic hormone.In: Handbook of Physiology—Renal Physiology. S. R. Geiger, J. Orloff and R. W. Berliner, editors. Section 8, p. 791. The Williams & Wilkins Co., Baltimore, Md.

    Google Scholar 

  • Hays, R. M. 1972. The movement of water across vasopressin-sensitive epithelia.In: Current Topics in Membranes and Transport. F. Bronner and A. Kleinzeller, editors. Vol. 3, p. 339. Academic Press, New York

    Google Scholar 

  • Kafka, M. S., Pak, C. Y. C. 1972. Effect of polypeptide hormones on lipid monolayers.J. Colloid Interface Sci. 41:148

    Google Scholar 

  • Kroes, J., Ostwald, R. 1971. Erythrocyte membranes—Effect of increased cholesterol content on permeability.Biochim. Biophys. Acta 249:647

    PubMed  Google Scholar 

  • Leaf, A., Hays, R. M. 1962. Permeability of isolated toad bladder to solutes and its modification by vasopressin.J. Gen. Physiol. 45:921

    PubMed  Google Scholar 

  • Lieb, W. R., Stein, W. D. 1969. Biological membranes behave, as non-porous polymeric sheets with respect to the diffusion of nonelectrolytes.Nature 224:240

    PubMed  Google Scholar 

  • Lipman, K. M., Dodelson, R., Hays, R. M. 1966. The surface charge of isolated toad urinary bladder epithelial cells.J. Gen. Physiol. 49:501

    PubMed  Google Scholar 

  • Lipson, L. C., Sharpe, G. W. G. 1971. Effect of prostaglandin E1 on sodium transport and osmotic water flow in toad bladder.Amer. J. Physiol. 220:1046

    PubMed  Google Scholar 

  • Maffly, R. H., Hays, R. M., Lamdin, E., Leaf, A. 1960. The effect of neurohypophyseal hormones on the permeability of the toad bladder to urea.J. Clin. Invest. 39:630

    PubMed  Google Scholar 

  • McFarland, B. G. 1972. Molecular basis of fluidity in membranes.Chem. Phys. Lipids 8:303

    PubMed  Google Scholar 

  • McLaughlin, S. G. A., Szabo, G., Eisenman, G. 1971. Divalent ions and the surface potential of charged phospholipid membranes.J. Gen. Physiol. 58:667

    PubMed  Google Scholar 

  • Parisi, M., Ripoche, P., Bourguet, J. 1969. The isolated epithelium of the frog urinary bladder; responses to oxytocin, 3′5′-adenosine monophosphate and theophylline.Pflüg. Arch. 309:59

    Google Scholar 

  • Petersen, J. M., Edelman, I. S. 1964. Calcium inhibition of the action of vasopressin on the urinary bladder of the toad.J. Clin. Invest. 43:583

    PubMed  Google Scholar 

  • Pietras, R. J., Wright, E. M. 1974a. Nonelectrolyte probes of membrane structure in ADH-treated toad urinary bladder.Nature 247:222

    PubMed  Google Scholar 

  • Pietras, R. J., Wright, E. M. 1974b. Effects of mucosal ADH on toad urinary bladder.Fed. Proc. 33:216

    Google Scholar 

  • Roth, S. 1973. A molecular model for cell interactions.Quart. Rev. Biol. 48:541

    PubMed  Google Scholar 

  • Sapirstein, V. S., Scott, W. N. 1973. Cyclic AMP and sodium transport.J. Clin. Invest. 52:2379

    PubMed  Google Scholar 

  • Sha'afi, R. I., Gary-Bobo, C. M., Solomon, A. K. 1971. Permeability of red cell membrane to small hydrophilic and lipophilic solutes.J. Gen. Physiol. 58:238

    PubMed  Google Scholar 

  • Smulders, A. P., Wright, E. M. 1971. The magnitude of nonelectrolyte selectivity in the gallbladder epithelium.J. Membrane Biol. 5:297

    Google Scholar 

  • Taylor, A., Mamelak, M., Reaven, E., Maffly, R. 1973. Vasopressin: Possible role of microtubules and microfilaments in its action.Science 181:347

    PubMed  Google Scholar 

  • Wartiovarra, V., Collander, R. 1960. Permeabiliätstheorien.Protoplasmatologia 2 c 8d

  • Wilson, G., Rose, S. P., Fox, C. F. 1970. The effect of membrane lipid unsaturation on glycoside transport.Biochem. Biophys. Res. Commun. 38:617

    PubMed  Google Scholar 

  • Wong, P. Y. D., Bedwani, J. R., Cuthbert, A. W. 1972. Homone action and the level of cyclic AMP and prostaglandins in the toad bladder.Nature, New Biol. 238:27

    Google Scholar 

  • Wright, E. M., Barry, P. H., Diamond, J. M. 1971. The mechanism of cation permeation in rabbit gallbladder.J. Membrane Biol. 4:331

    Google Scholar 

  • Wright, E. M., Pietras, R. J. 1974. Routes of nonelectrolyte permeation across epithelial membranes.J. Membrane Biol. 17:293

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pietras, R.J., Wright, E.M. The membrane action of antidiuretic hormone (ADH) on toad urinary bladder. J. Membrain Biol. 22, 107–123 (1975). https://doi.org/10.1007/BF01868166

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868166

Keywords

Navigation