Skip to main content
Log in

Muscarinic receptor subtypes in bovine adrenal medulla

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Catecholamine secretion in the bovine adrenal medulla is evoked largely by nicotinic receptor activation. However, bovine adrenal medulla also contain muscarinic receptors that mediate several cell responses. To understand the physiological role of muscarinic receptors in the bovine adrenal medulla it is important to identify the pharmacological subtypes present in this tissue. For this, we analyzed the abilities of differnt selective muscarinic antagonists in displacing the binding of the non-selective antagonist [3H] quinuclidinyl benzylate to an enriched plasma membrane fraction prepared from bovine adrenal medulla. All the selective antagonists bind at least two bindings sites with different affinities. The binding profile of the sites with high proportion is similar to the M2 subtype and those present in low proportion have a M1 profile. However, some variation in the proportion of the sites for the different ligands suggest the presence of the third pharmacological subtype (M3). We conclude that the sites in high proportion (60–80%) correspond to M2 muscarinic subtypes, and the rest is constitute by M1 plus M3 subtypes. The presence of multiplicity of subtypes in the adrenal medulla membranes suggests a diversity of functions of muscarinic receptors in the adrenal gland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

[3H]QNB:

[3H]quinuclidinyl benzylate

HHSiD:

hexahydro-siladifenidol-hydrochloride

AF-DX 116:

11-[[2-(diethylamino)methyl]]-1-piperidinyl]-5,11-dihydro-6H-pyrido[2,3,-b][1,4]benzodiazepin-6-one

4-DAMP:

4-diphenylacetoxy-N-methyl piperidine methobromide

References

  1. Ledbetter, F. H., and Kirshner, N. 1975. Studies of chick adrenal medulla in organ culture. Biochem. Pharmacol. 24:967–974.

    PubMed  Google Scholar 

  2. Knight, D. E., and Baker, P. F. 1986. Observation of the muscarinic receptors of bovine adrenal medulla. Neuroscience 19:357–366.

    PubMed  Google Scholar 

  3. Ballesta, J. J., Borges, R., García, A. G., and Hidalgo, M. J. 1989. Secretory and radioligand binding studies on muscarinic receptors in bovine and feline chromaffin cell. J. Physiol. 418:411–426.

    PubMed  Google Scholar 

  4. Liang, B. T., and Perlman, R. L. 1979. Catecholamine secretion by hamster adrenal cells. J. Neurochem. 32:927–933.

    PubMed  Google Scholar 

  5. Almazán, G., Aunis, D., García, A. G., Montiel, C., Nicolás, G. P., and Sánchez-García, P. 1984. Effects of collagenase on the release of 3H-noradrenaline from culture bovine adrenal chromaffin cells. Br. J. Pharmacol. 81:599–610.

    PubMed  Google Scholar 

  6. Barron, B. A., Murrin, L. C., and Hexum, T. D. 1986. Muscarinic binding sites in bovine adrenal medulla. Eur. J. Pharmacol. 122:269–273.

    PubMed  Google Scholar 

  7. Kayaalp, S. O., and Neff, N. H. 1979. Cholinergic muscarinic receptors of bovine adrenal medulla. Neuropharmacology 18:909–911.

    PubMed  Google Scholar 

  8. Kao, L.-S., and Howthorne, J. N. 1985. Calcium mobilization and catecholamine secretion in adrenal chromaffin cells. J. Biol. Chem. 260:2019–2022.

    PubMed  Google Scholar 

  9. Derome, G., Tseng, R., Mercier, P., Lemaire, J., and Lemaire, S. 1981. Possible muscarinic regulation of catecholamine secretion mediated by cyclic GMP in isolated bovine chromaffin cells. Biochem. Pharmacol. 30:855–860.

    PubMed  Google Scholar 

  10. Schneider, A. S., Cline, H. T., and Lemair, S. 1979. Rapid rise in cyclic AMP accompanies catecholamine secretion in suspensions of isolated adrenal chromaffin cells. Life Sci. 24:1389–1394.

    PubMed  Google Scholar 

  11. Yanagihara, N., Isosaki, M., Ohuchi, T., and Oka, M. 1979. Muscarinic receptor-mediated increase in cyclic GMP in isolated bevine adrenal medullary cells. FEBS Lett. 105:296–298.

    PubMed  Google Scholar 

  12. Burgoyne, R. D. 1991. Control of exocytosis in adrenal chromaffin cells. Biochim. Biophys. Acta 1071:174–202.

    PubMed  Google Scholar 

  13. Fosberg, E. J., Rojas, E., and Pollard, H. B. 1986. Muscarinic receptor enhancement of nicotine-induced catecholamine secretion may be mediated by phosphoinositide metabolism in bovine adrenal cromaffin cells. J. Biol. Chem. 261:4915–4920.

    PubMed  Google Scholar 

  14. Kilpatrick, D. L., Ledbetter, F. H., Carson, K. A., Kirshner, A. G., Slepetis, R., and Kirshner, N. 1980. Stability of bovine adrenal medulla cells in culture. J. Neurochem. 35:679–692.

    PubMed  Google Scholar 

  15. Cheek, T. R., and Burgoyne, R. D. 1985. Effect of activation of muscarinic receptors in intracellular free calcium and secretion in bovine adrenal chromaffin cells. Biochim. Biophys. Acta 846:167–173.

    PubMed  Google Scholar 

  16. Shirvan, M. H., Pollard, H. B. and Heldman, E. 1991. Mixed nicotinic and muscarinic features of cholinergic receptors coupled to secretion in bovine chromaffin cells. Proc. Natl. Acad. Sci. (U.S.A.) 88:4860–4864.

    Google Scholar 

  17. Bonner, T. I. 1989. The molecular basis of muscarinic receptor diversity. Trends Neurosci. 12:148–151.

    PubMed  Google Scholar 

  18. Barnard, E. A. 1988. Separating receptors subtypes from their shadow. Nature (News and Views) 335:301–302.

    Google Scholar 

  19. Buckley, N. J., Bonner, T. I., Buckley, C. M., and Brann, M. R. 1989. Antagonist binding properties of five cloned muscarinic receptors expressed in CHO-K1 cells Mol. Pharmacol. 35:469–473.

    PubMed  Google Scholar 

  20. Peralta, E. G., Ashkenazi, A., Winslow, J. W., Smith, D. H., Ramachandran, J., and Capon, D. J. 1987. Distinct primary structures, ligang-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. EMBO J. 6:3923–3929.

    PubMed  Google Scholar 

  21. Lowry, O. M., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement by the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  22. Munson, P. J., and Rodbard, D. 1980. LIGAND: a versatile computerized approach for characterization of ligand binding systems. Anal. Biochem. 107:220–239.

    PubMed  Google Scholar 

  23. Fernando, J. C. R., Abdallah, E.-S., Evinger, M., Forray, C., and El-Pakahani E. E. 1991. The presence of a m4 subtype muscarinic receptor in the bovine adrenal medulla revealed by mRNA and receptor binding analysis. Eur. J. Pharmacol. Mol. Pharmacol. 207:297–303.

    Google Scholar 

  24. Aguilar, J. S., Criado, M., and De Robertis, E. 1979. Pre- and postsynaptic localization of central muscarinic receptors. Eur. J. Pharmacol. 57:227–230.

    PubMed  Google Scholar 

  25. Fonseca, M. I., Aguilar, J. S., Skorupa, A. F., and Klein, W. L. 1991. Cellular mapping of m2 muscarinic receptor in rat olfactory bulb using an antiserum raised aginst a cytoplasmic loop peptide. Brain Res., in press.

  26. Cheng, Y. C., and Prusoff, W. H. 1973. Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50% inhibition (150) of an exzymatic reaction. Biochem. Pharmacol. 22:3099–3106.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguilar, J.S., Ballesta, J.J., Reig, J.A. et al. Muscarinic receptor subtypes in bovine adrenal medulla. Neurochem Res 17, 1235–1239 (1992). https://doi.org/10.1007/BF00968406

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00968406

Key Words

Navigation