Skip to main content
Log in

Quantitative determination and regional distribution of pipecolic acid in rodent brain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

A rapid and sensitive method for the quantitative determination of pipecolic acid (PA), one of the three cyclic secondary imino acids present in mammalian brain is described. The quantification and identification of PA are accomplished in rat and mouse brain using high performance liquid chromatography with electrochemical detection (LCEC) and nipecotic acid (NPA) as an internal standard. The cyclic imino acids are derivatized with 2,4-dinitrofluorobenzene (DNFB) to dinitrophenyl derivatives. The remaining time for LCEC analysis is less than 30 min and the limit of sensitivity is in the lower picomole range. The levels of PA found in rat and mouse brain are comparable to those reported using gas chromatography/mass spectrometry. The regional distribution of PA shows higher concentrations of PA in hypothalamus, pons-medulla oblongata and cerebellum. The present results demonstrate that LCEC is sensitive enough to determine endogenous levels of PA in mg amounts of rodent brain tissue. Due to its simplicity and rapidity, the technique represents an alternative to existing methods. This method can also be used for determination of PA in CSF, blood or urine of hyperipecolic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rothstein, M., andMiller, L. L. 1954. The conversion of lysine to pipecolic acid in the rat. J. Biol. Chem. 211:851–858.

    Google Scholar 

  2. Boulanger, P. Osteux, R. Sacquet, E., andCharlier, H. 1969. La degradation de lal-lysine le rat germ-free. Biochim. Biophys. Acta 184:338–344.

    Google Scholar 

  3. Grove, J. A., Gilbertson, T. J., Hammerstedt, R. D., andHenderson, L. M. 1969. The metabolism ofd- andl-lysine specifically labeled with15N. Biochim. Biophys. Acta. 184:329–337.

    Google Scholar 

  4. Higashino, K., Fukioka, M., andYamamura, Y. 1971. The conversion ofl-lysine to saccharopine and alpha-aminoadipate in mouse. Arch. Biochem. Biophys. 142:606–614.

    Google Scholar 

  5. Schmidt-Glenewinkel, T., Nomura, Y., andGiacobini, E. 1977. The conversion of lysine into piperidine, cadaverine, and pipecolic acid in the brain and other organs of the mouse. Neurochem. Res. 2:619–637.

    Google Scholar 

  6. Chang, Y-F. 1976. Pipecolic acid pathway: the major lysine metabolic route in the rat brain. Bioch. Bioph. Res. Comm. 69:174–180.

    Google Scholar 

  7. Chang, Y-F. 1978. Lysine metabolism in the rat brain: the pipecolic acid-forming pathway. J. Neurochem. 30:347–354.

    Google Scholar 

  8. Chang, Y-F. 1978. Lysine metabolism in the rat brain: blood-brain barrier transport, formation of pipecolic acid and human hyperpipecolatemia. J. Neurochem. 30:355–360.

    Google Scholar 

  9. Chang, Y-F. 1982. Lysine metabolism in the human and the monkey: demonstration of pipecolic acid formation in the brain and other organs. Neurochem. Res. 7:577–588.

    Google Scholar 

  10. Giacobini, E., Nomura, Y., andSchmidt-Glenewinkel, T. 1980. Pipecolic acid: origin, biosynthesis and metabolism in the brain. Cell. Molec. Biol. 26:135–146.

    Google Scholar 

  11. Nomura, Y., Schmidt-Glenewinkel, T., andGiacobini, E. 1978. In vitro formation of piperidine, cadaverine and pipecolic acid in chick and mouse brain during development. Develop. Neurosci. 1:239–249.

    Google Scholar 

  12. Nomura, Y., Schmidt-Glenewinkel, T., andGiacobini, E. 1980. Uptake of piperidine and pipecolic acid by synaptosomes from mouse brain. Neurochem. Res. 5:1163–1173.

    Google Scholar 

  13. Nomura, Y., Okuma, Y., Segawa, T., Schmidt-Glenewinkel, T., andGiacobini, E. G. 1979. A calcium-dependent, high potassium-induced release of pipecolic acid from rat brain slices. 33:803–805.

    Google Scholar 

  14. Nishio, H., Giacobini, E., andOortiz, J. 1982. Accumulation, elimination, release and metabolism of pipecolic acid in the mouse brain following intraventricular injection. Neurochem. Res. 7:373–385.

    Google Scholar 

  15. Kasé, Y., Takahama, K., Hashimoto, T., Kaisaku, J., Okano, Y., andMiyata, T. 1980. Electrophoretic study of pipecolic acid, a biogenic imino acid, in the mammalian brain. Brain Res. 193:608–613.

    Google Scholar 

  16. Giacobini, E., andGutierrez, M. D. C. 1983. GABA and pipecolic acid, a possible reciprocal modulation in the CNS. Pages 571–580,in Hertz, L., Kvamme, E., McGeer, E., andSchousboe, A. (eds.) Glutamine, Glutamate and GAB in Central Nervous System, Vol. 7, Alan R. Liss, New York.

    Google Scholar 

  17. Kasé, Y., Kataoka, M., Miyata, T. andOkano, Y. 1973. Pipecolic acid in the dog brain. Life Sci. 13:867–873.

    Google Scholar 

  18. Gatfield, P. D., Taller, E., Hinton, G. G., Wallace, A. C., Abdelnour, G. M., andHaust, M. D. 1968. Hyperpipecolatemia: a new metabolic disorder associated with neuropathy and hepatomegaly: a case study. Can. Med. Assoc. J. 99:1215–1233.

    Google Scholar 

  19. Lawrence, J. M., Herrick, H. E., andCoahran, D. R. 1973. Determination of pipecolic acid by thin-layer chromatography. Analyt. Biochem. 53:317–320.

    Google Scholar 

  20. Danks, D. M., Tippett, P., Adams, C., andCampbell, P. 1975. Cerebro-hepato-renal syndrome of Zellweger. J. Pediatrics 86:382–387.

    Google Scholar 

  21. Burton, B. K., Reed, S. P., andRemy, W. T. 1981. Hyperpipecolic acidemia: clinical and biochemical observations in two male siblings. J. Pediatrics 99:729–734.

    Google Scholar 

  22. Okano, Y., Kataoka, M., Miyata, T., Morimoto, H., Takahama, K. Hitoshi, T., Kasé, Y., Matsumoto, I., andShinka, T. 1981. Simultaneous analysis of pipecolic acid with proline in the brain by selected ion-monitoring technique. Analyt. Biochem. 117:196–202.

    Google Scholar 

  23. Giacobini, E. 1983. Imino acids of the brain. Pages 583–605,in Lajtha, A. (ed.) Plenum Publishing Corp., New York.

    Google Scholar 

  24. Kissinger, P. T., Bruntlett, C. S., andShoup, R. E. 1981. I. Minireview: Neurochemical applications of liquid chromatography with electrochemical detection. Life Sci. 28:455–465.

    Google Scholar 

  25. Jacobs, W. 1982. Use of series dual electrodes for elimination of sample oxygen interference. Current Separations: Bioanalyt. Systems, 3:45–47.

    Google Scholar 

  26. Lajtha, A., Marker, H. S., andClarke, D. D. 1981. Metabolism and transport of carbohydrates and amino acids.in Siegel, G. Et Al. (eds.) Little Brown and Co., Boston.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.S., Giacobini, E. Quantitative determination and regional distribution of pipecolic acid in rodent brain. Neurochem Res 9, 1559–1569 (1984). https://doi.org/10.1007/BF00964591

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964591

Keywords

Navigation