Skip to main content
Log in

Sensitive and Fast Detection of Monoamines and Their Metabolites by High-Performance Liquid Chromatography Coupled with an Electrochemical Detector (HPLC-ECD) Under Isocratic Conditions: Application to Intracerebral Microdialysis in Mice Treated by Fluoxetine and Atomoxetine

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Neurotransmitters (NTs) play a crucial role in brain function and associated with various neurological and neuropsychiatric disorders. This study devised an optimized analytical method, using high-performance liquid chromatography (HPLC) with electrochemical detection (ECD), to concurrently assess homovanillic acid (HVA), epinephrine (E), norepinephrine (NE), serotonin (5-HT), 5-hydroxyindolacetic acid (5-HIAA), melatonin (MT), and dopamine (DA) in mouse brain tissue. The mobile phase composition was fine-tuned to achieve efficient separation of these compounds, with optimal conditions involving 5% acetonitrile, 10% methanol, and 85% aqueous phase containing phosphate buffer, citric acid, sodium dodecyl sulfate (SDS) and ethylenedinitrilotetraacetic acid (EDTA). The pH of the mobile phase was adjusted to 3.2. An amperometric module was employed for electrochemical detection, with potential optimization to enhance sensitivity. The developed method exhibited excellent linearity and sensitivity, with limit of detection (LOD) and limit of quantification (LOQ) values lower than nmol L−1. The method was applied to an intracerebral microdialysis experiment in mice hippocampus, demonstrating the capability to monitor changes in NTs and their metabolites in response to systemic fluoxetine/atomoxetine administration. This study presents a reliable and sensitive analytical approach to investigating NTs dynamics, which could contribute to a deeper understanding of neurotransmission under normal and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hoyle G (1985) Neurotransmitters, neuromodulators, and neurohormones. In: Gilles R, Balthazart J (eds) Neurobiology. Springer, Berlin, pp 264–279

    Chapter  Google Scholar 

  2. Lanari A, Amenta F, Silvestrelli G et al (2006) Neurotransmitter deficits in behavioural and psychological symptoms of Alzheimer’s disease. Mech Ageing Dev 127:158–165. https://doi.org/10.1016/j.mad.2005.09.016

    Article  CAS  PubMed  Google Scholar 

  3. Xu Y, Yan J, Zhou P et al (2012) Neurotransmitter receptors and cognitive dysfunction in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 97:1–13. https://doi.org/10.1016/j.pneurobio.2012.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Factor SA, McDonald WM, Goldstein FC (2017) The role of neurotransmitters in the development of Parkinson’s disease-related psychosis. Eur J Neurol 24:1244–1254. https://doi.org/10.1111/ene.13376

    Article  CAS  PubMed  Google Scholar 

  5. Linert W, Jameson GNL (2000) Redox reactions of neurotransmitters possibly involved in the progression of Parkinson’s Disease. J Inorg Biochem 79:319–326. https://doi.org/10.1016/S0162-0134(99)00238-X

    Article  CAS  PubMed  Google Scholar 

  6. Ungerstedt U, Hallström Å (1987) In vivo microdialysis - a new approach to the analysis of neurotransmitters in the brain. Life Sci 41:861–864. https://doi.org/10.1016/0024-3205(87)90181-0

    Article  CAS  PubMed  Google Scholar 

  7. Van Schoors J, Lens C, Maes K et al (2015) Reassessment of the antioxidative mixture for the challenging electrochemical determination of dopamine, noradrenaline and serotonin in microdialysis samples. J Chromatogr B 998–999:63–71. https://doi.org/10.1016/j.jchromb.2015.06.010

    Article  CAS  Google Scholar 

  8. Wan J, Peng W, Li X et al (2021) A genetically encoded sensor for measuring serotonin dynamics. Nat Neurosci 24:746–752. https://doi.org/10.1038/s41593-021-00823-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao S, Piatkevich KD (2023) Techniques for in vivo serotonin detection in the brain: state of the art. J Neurochem 166:453–480. https://doi.org/10.1111/jnc.15865

    Article  CAS  PubMed  Google Scholar 

  10. Guiard B, Lanfumey L, Gardier A (2006) Microdialysis approach to study serotonin outflow in mice following selective serotonin reuptake inhibitors and substance P (neurokinin 1) receptor antagonist administration: a review. Curr Drug Targets 7:187–201. https://doi.org/10.2174/138945006775515428

    Article  CAS  PubMed  Google Scholar 

  11. Peinado JM, McManus KT, Myers RD (1986) Rapid method for micro-analysis of endogenous amino acid neurotransmitters in brain perfusates in the rat by isocratic HPLC-EC. J Neurosci Methods 18:269–276. https://doi.org/10.1016/0165-0270(86)90013-0

    Article  CAS  PubMed  Google Scholar 

  12. Donzanti BA, Yamamoto BK (1988) An improved and rapid HPLC-EC method for the isocratic separation of amino acid neurotransmitters from brain tissue and microdialysis perfusates. Life Sci 43:913–922. https://doi.org/10.1016/0024-3205(88)90267-6

    Article  CAS  PubMed  Google Scholar 

  13. Zhou G-S, Zhang J, Yin Y et al (2021) HILIC-UHPLC-QTRAP®/MS2 quantification of 15 neurotransmitters of the combination of donepezil and ginkgo ketoester tablet in different biological matrices from dementia mice: application to study the synergistic effect of the two drugs. Microchem J 161:105791. https://doi.org/10.1016/j.microc.2020.105791

    Article  CAS  Google Scholar 

  14. Boulghobra A, Bonose M, Billault I, Pallandre A (2022) A rapid and sensitive method for the quantification of dopamine and serotonin metabolites in cerebrospinal fluid based on UHPLC with fluorescence detection. J Chromatogr B 1200:123264. https://doi.org/10.1016/j.jchromb.2022.123264

    Article  CAS  Google Scholar 

  15. De Benedetto GE, Fico D, Pennetta A et al (2014) A rapid and simple method for the determination of 3,4-dihydroxyphenylacetic acid, norepinephrine, dopamine, and serotonin in mouse brain homogenate by HPLC with fluorimetric detection. J Pharm Biomed Anal 98:266–270. https://doi.org/10.1016/j.jpba.2014.05.039

    Article  CAS  PubMed  Google Scholar 

  16. Xu N, Qiu C, Wang W et al (2011) HPLC/MS/MS for quantification of two types of neurotransmitters in rat brain and application: myocardial ischemia and protection of Sheng-Mai-San. J Pharm Biomed Anal 55:101–108. https://doi.org/10.1016/j.jpba.2010.12.015

    Article  CAS  PubMed  Google Scholar 

  17. Ferry B, Gifu E-P, Sandu I et al (2014) Analysis of microdialysate monoamines, including noradrenaline, dopamine and serotonin, using capillary ultra-high performance liquid chromatography and electrochemical detection. J Chromatogr B 951–952:52–57. https://doi.org/10.1016/j.jchromb.2014.01.023

    Article  CAS  Google Scholar 

  18. Reinhoud NJ, Brouwer H-J, Van Heerwaarden LM, Korte-Bouws GAH (2013) Analysis of glutamate, GABA, noradrenaline, dopamine, serotonin, and metabolites using microbore UHPLC with electrochemical detection. ACS Chem Neurosci 4:888–894. https://doi.org/10.1021/cn400044s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cannazza G, Di Stefano A, Mosciatti B et al (2005) Detection of levodopa, dopamine and its metabolites in rat striatum dialysates following peripheral administration of l-DOPA prodrugs by mean of HPLC–EC. J Pharm Biomed Anal 36:1079–1084. https://doi.org/10.1016/j.jpba.2004.09.029

    Article  CAS  PubMed  Google Scholar 

  20. Guiard BP, Gotti G (2024) The high-precision liquid chromatography with electrochemical detection (HPLC-ECD) for monoamines neurotransmitters and their metabolites: a review. Molecules 29:496. https://doi.org/10.3390/molecules29020496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bymaster F (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat A potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27:699–711. https://doi.org/10.1016/S0893-133X(02)00346-9

    Article  CAS  PubMed  Google Scholar 

  22. Hervás I, Artigas F (1998) Effect of fluoxetine on extracellular 5-hydroxytryptamine in rat brain. Role of 5-HT autoreceptors. Eur J Pharmacol 358:9–18. https://doi.org/10.1016/S0014-2999(98)00579-2

    Article  PubMed  Google Scholar 

  23. Franklin BJK, Paxinos G (2008) The mouse brain in stereotaxic coordinates, compact, 3rd ed

  24. Broch SC, Celia García Alvarez-Coque M, Broch SC, Esteve-Romero JS (1998) Liquid chromatographic determination of some thiazide diuretics in pharmaceuticals with a sodium dodecyl sulfate mobile phase. Analyst 123:301–306. https://doi.org/10.1039/a705641i

    Article  ADS  CAS  Google Scholar 

  25. Kalantary RR, Moradi M, Pirsaheb M et al (2019) Enhanced photocatalytic inactivation of E. coli by natural pyrite in presence of citrate and EDTA as effective chelating agents: experimental evaluation and kinetic and ANN models. J Environ Chem Eng 7:102906. https://doi.org/10.1016/j.jece.2019.102906

    Article  CAS  Google Scholar 

  26. Du T, Cui T, Qiu H et al (2018) Simultaneous determination of tryptophan, kynurenine, kynurenic acid and two monoamines in rat plasma by HPLC-ECD/DAD. J Pharm Biomed Anal 158:8–14. https://doi.org/10.1016/j.jpba.2018.05.032

    Article  CAS  PubMed  Google Scholar 

  27. Pratuangdejkul J, Nosoongnoen W, Guérin G-A et al (2006) Conformational dependence of serotonin theoretical pKa prediction. Chem Phys Lett 420:538–544. https://doi.org/10.1016/j.cplett.2006.01.035

    Article  ADS  CAS  Google Scholar 

  28. Rosado T, Henriques I, Gallardo E, Duarte AP (2017) Determination of melatonin levels in different cherry cultivars by high-performance liquid chromatography coupled to electrochemical detection. Eur Food Res Technol 243:1749–1757. https://doi.org/10.1007/s00217-017-2880-8

    Article  CAS  Google Scholar 

  29. Bidel F, Corvaisier S, Jozet-Alves C et al (2016) An HPLC-ECD method for monoamines and metabolites quantification in cuttlefish (cephalopod) brain tissue: biogenic monoamines and metabolites in cuttlefish (cephalopod) brain. Biomed Chromatogr 30:1175–1183. https://doi.org/10.1002/bmc.3663

    Article  CAS  PubMed  Google Scholar 

  30. Placidi GPA, Oquendo MA, Malone KM et al (2001) Aggressivity, suicide attempts, and depression: relationship to cerebrospinal fluid monoamine metabolite levels. Biol Psychiatry 50:783–791. https://doi.org/10.1016/S0006-3223(01)01170-2

    Article  CAS  PubMed  Google Scholar 

  31. Němečková-Makrlíková A, Barek J, Navrátil T et al (2020) Simultaneous determination of tumour biomarkers homovanillic acid, vanillylmandelic acid, and 5-hydroxyindole-3-acetic acid in human urine using single run HPLC with a simple wall-jet glassy carbon electrochemical detector. J Electroanal Chem 878:114629. https://doi.org/10.1016/j.jelechem.2020.114629

    Article  CAS  Google Scholar 

  32. Gotti G, Evrard D, Gros P (2023) Simultaneous electrochemical detection of oxygen (O2) and hydrogen peroxide (H2O2) in neutral media. Int J Electrochem Sci 18:100262. https://doi.org/10.1016/j.ijoes.2023.100262

    Article  CAS  Google Scholar 

  33. Fagan-Murphy A, Watt F, Morgan KA, Patel BA (2012) Influence of different biological environments on the stability of serotonin detection on carbon-based electrodes. J Electroanal Chem 684:1–5. https://doi.org/10.1016/j.jelechem.2012.08.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by « Agence Nationale pour la Recherche » project AIS-in-DEP (CE37-Neuroscience Intégrative et Cognitive).

Funding

This study is funded by Agence Nationale de la Recherche, AIS-in-DEP CE37.

Author information

Authors and Affiliations

Authors

Contributions

PP: Microdialysis experiments. BPG: Study design and writing. GG: HPLC development experiments and writing.

Corresponding author

Correspondence to Guillaume Gotti.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pantiya, P., Guiard, B.P. & Gotti, G. Sensitive and Fast Detection of Monoamines and Their Metabolites by High-Performance Liquid Chromatography Coupled with an Electrochemical Detector (HPLC-ECD) Under Isocratic Conditions: Application to Intracerebral Microdialysis in Mice Treated by Fluoxetine and Atomoxetine. Chromatographia 87, 175–185 (2024). https://doi.org/10.1007/s10337-023-04309-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-023-04309-5

Keywords

Navigation